In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia appli
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreArtificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show MoreThis research analyzes the level of the short circuit effect of the Iraqi super network and decides the suitable location for the High Voltage Direct Current (HVDC) connections in order to obtain the best short circuit reduction of the total currents of the buses in the network. The proposed method depends on choosing the transmission lines for Alternating current (AC) system that suffers from high Short Circuit Levels (SCLs) in order to reduce its impact on the transmission system and on the lines adjacent to it and this after replacing the alternating current (AC) line by direct current (DC) line. In this paper, Power System Simulator for Engineering (PSS/E) is used to model two types of HVDC lines in an effective regi
... Show MoreBackground: Lateral sinus augmentation and simultaneous insertion of dental implants is a highlypredictable procedure and associated with high rate of implants success.Aims: To evaluate implant stability changes following maxillary sinus augmentation utilizing deproteinizedbovine bone alone or mixed with platelet-rich fibrin.Materials and Methods: A total of 34 lateral sinus augmentation procedures were performed and 50 dentalimplants simultaneously installed. The lateral sinus augmentation cases were allocated randomly into 3groups: Group A comprised 13 procedures and 21 dental implants utilizing solely deproteinized bovine bone.Group B involved 10 cases and 16 dental implants using deproteinized bovine bone mixed with leukocyteand
... Show MoreABSTRACT Background: According to Branemark’s protocol, the waiting period between tooth extraction and implant placement is 6–8 months; this is the late placement technique. Achieving and maintaining implant stability are prerequisites for a dental implant to be successful. Resonance Frequency Analysis (RFA) is a noninvasive diagnostic method that measures implant stability. The aim of this study was to investigate the influence of treatment protocol and implant dimensions on primary implant stability utilizing RFA. Materials and methods: This study included 63 Iraqi patients (37 male, 26 female; ranging 22-66 years). According to treatment protocol, the sample was divided into 2 groups; A (delayed) & B (immediate). Dental im
... Show MoreComparative Analysis of Economic Policy Stability between Monarchical and Republican Systems: A Theoretical Fundamental Research