Preferred Language
Articles
/
bsj-1417
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
An algorithm for binary codebook design based on the average bitmap replacement error (ABPRE)
...Show More Authors

In this paper, an algorithm for binary codebook design has been used in vector quantization technique, which is used to improve the acceptability of the absolute moment block truncation coding (AMBTC) method. Vector quantization (VQ) method is used to compress the bitmap (the output proposed from the first method (AMBTC)). In this paper, the binary codebook can be engender for many images depending on randomly chosen to the code vectors from a set of binary images vectors, and this codebook is then used to compress all bitmaps of these images. The chosen of the bitmap of image in order to compress it by using this codebook based on the criterion of the average bitmap replacement error (ABPRE). This paper is suitable to reduce bit rates

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-kindy College Medical Journal
Neural Tube Defects in Iraq
...Show More Authors

1.
Embryonic Origin of Neural Tube Defects.
Insaf Jasim Mahmoud
2.
Etiology of Neural Tube Defectss.
Ali Abdul Razzak Obed
3.
Epidemiology of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
4.
Surgical Management of Neural Tube Defects.
Laith Thamer Al-Ameri
5.
Prevention of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi

View Publication Preview PDF
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 11 2023
Journal Name
Applied Sciences
A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones
...Show More Authors

Electronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene

... Show More
View Publication
Scopus (4)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Oct 07 2022
Journal Name
Himalayan Economics And Business Management
Analyzing and Measuring the Relationship between Monetary Policy and Monetary Stability in the Iraqi Economy for the Period 1990-2020
...Show More Authors

Monetary policy occupies a prominent role in achieving monetary stability by adjusting the growth rates of the number of available means of payment in line with changes in the size of the gross domestic product in the country and expressed by the monetary stability coefficient agreed upon by the International Monetary Fund, a term that hides the fact that there is a rate of change in the volume of commodity or real production which expresses the levels of aggregate supply in the economy, which corresponds to the quantities of cash in circulation, which represent a net purchasing power and stimulate aggregate demand, which completes the picture of the existence of the market mechanism, expressed by the monetary or economic stability

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 07 2025
Journal Name
Intelligent Service Robotics
Grasping Stability of a Robotic Gripper with Frictional Self-Locking Mechanism
...Show More Authors

The grasping stability of robotic manipulators is crucial to enable autonomous manipulation in an environment where robots are facing obstacles in their route, where abrupt changes in the robot’s speed are induced. These speed variations will produce forces affecting the robotic manipulator, hence its grasping stability. In this research, the grasping stability of a robotic manipulator that functions according to a frictional self-locking mechanism is investigated statically and dynamically. Both theoretical and experimental results showed that the grasped object size, weight, and its orientation inside the gripper have a great effect on grasping stability. Both the theoretical and experimental results indicated that the grasping object p

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref