In This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 kcal /k /mol, -15370.51 kcal / mol ) respectively under condition of room temperature and atmosphere pressure ( 298 k , 1 atm.). We calculate there parameters at various temperature from ( 100 – 3000 ) K . It was found that the obtainded results were in a good agreement with previous experimental facts.
N-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
A Raman spectroscopy method was optimised to examine the chemical changes of aspirin tablets after interaction with helium temperatures. Several aspirin tablets were exposed to plasma-assisted desorption ionisation flame for different times (10, 30, 50, 60, 180 and 300s) and then analysed by Raman spectroscopy using optimal conditions. The changes in chemistry between exposed and fresh (without exposure to plasma) tablets were compared. The vibrational peaks of the aspirin molecule in the Raman spectrum were identified by checking the peak position. The results showed clear spectra with increases in intensity of vibrational peaks until 30s, whereas no spectra were measured for the exposed tablets to plasma flame after 50s. It can, the
... Show MoreThis study included prepared samples of epoxy reinforced by the novolac , aluminum , glass powder and epoxy reinforced by aluminum , glass powder and epoxy alone .They are used as reinforced materials of volum fraction amounting 40% . The mechanical properties inclouded ( tensile , compressive and wear) where the wear test inclouded different applied loads (5,10,15) . From the results showed the epoxy reinforced by aluminum and glass powder has higher compressive strength (56.91) Mpa and higher tensile strength (132.2) Mpa .But the epoxy alone has higher wear rate and the epoxy reinforced by aluminum and glass powder which have higher elasticity of modulus from the tensile test (315.7) Mpa
We report the detail characterizations and
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
In this work, the optical emission characteristics of the ZnO plasma were presented. The plasma parameters: electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD) were studied with a spectrometer that collects the spectrum ZnO plasma in air produced by Nd:YAG laser,(λ=1064 nm) at ratio X=0.5 in the range of energy of (700-1000 mJ), duration (10 ns). The Boltzmann plot methodwas employed to calculate the electron temperature (Te), while the Stark broadening was used to determine the electron density (ne), Debye duration (λD), and plasma frequency (fp). Te, ne, and fp
... Show MoreThis paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show More