The present study aimed at shed light on the association between HLA-class I antigens (A, B and Cw) and brain tumours (meningioma and glioma) in the basis of their individual frequencies or two-locus association A total of 52 brain tumour patients were enrolled in this study, with an age range of 7-68 years. The patients were divided into two clinical groups; meningioma (20 cases) and glioma (22 cases), while the remaining 10 cases represented other types of brain tumour. Control samples included 47 Iraqi Arab apparently healthy blood volunteers, with an age range of 15-50 year. Three HLA antigens showed a significant increased frequency in total patients as compared to controls. They were B13 (34.6 vs. 6.5%), B40 (15.4 vs. 2.2%) and Cw3 (15.4 vs. 2.2%). In contrast, B5 was significantly decreased (15.4 vs. 34.8%). In meningioma patients, only B13 was significantly increased (35.0 vs. 6.5%), while in glioma patients, B13 (36.4 vs. 6.5%) and Cw5 (36.4 vs. 2.2%) were significantly increased. Variations between patients and controls have been also encountered for the observed and expected HLA-two locus associations (B13-Cw3, B13-Cw5 and B40-Cw5).
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreAbstract
Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the
... Show MoreThis study focused on determining the markers of Macrophage migration inhibitor (MIF), as well as the N-telopeptides of type I bone collagen (NTX), and some other parameters (alkaline phosphatase (ALP), vitamin D (Vit D), calcium (Ca), phosphorus (P), and magnesium (Mg), and their correlation with other parameters in osteoporosis. One hundred ten subjects were involved in the current study. There were two groups of patients: group I (30) women with severe osteoporosis and group II (30) women with mild osteoporosis. For comparison, 50 apparently healthy individuals were included as a control. Serum levels of MIF, and NTX were significantly higher in groups I and II as compared to the control group, which indicate that these two parameters
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Brain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.