Preferred Language
Articles
/
bsj-1343
Using fuzzy logic for estimating monthly pan evaporation from meteorological data in Emara/ South of Iraq
...Show More Authors

Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed to evaluate effect of each of these variables on estimation process. Two error statistics namely root mean squared error and coefficient of determination were used to measure the performance of the developed models. The results indicated that the model, whose input variables are T, W, and RH, perform the best for estimating evaporation values. In addition, the model which is dominated by (T) is significantly and distinctly helps to prove the predictive ability of fuzzy inference system. Furthermore, agreements of the results with the observed measurements indicate that fuzzy logic is adequate intelligent approach for modeling the dynamic of evaporation process.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
GENERATION OF MPSK SIGNAL USING LOGIC CIRCUITS
...Show More Authors

The traditional technique of generating MPSK signals is basically to use IQ modulator that involves analog processing like multiplication and addition where inaccuracies may exist and would lead to imbalance problems that affects the output modulated signal and hence the overall performance of the system. In this paper, a simple method is presented for generating the MPSK using logic circuits that basically generated M-carrier signals each carrier of different equally spaced phase shift. Then these carriers are time multiplexed, according to the data symbols, into the output modulated signal.

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Application of the Surface- consistent DE convolution on a seismic data of Al-Najaf and Al-Muthanna Governorates in the south of Iraq
...Show More Authors

This study deals with the application of surface-consistent  deconvolution  to the two-dimensional seismic data applied to the Block 11 area within the administrative boundaries of Najaf and Muthanna Governorates with an area of ​​4822 , the processed seismic data of line (7Gn 21) is 54 km long. The study was conducted within the Processing Department of the Oil Exploration Company. The gap surface- consistent deconvolution was applied using best results of the  parameters  applied  were: The length of the operator 240, the gap operator 24, the white noise 0.01%, the seismic sections of this type showed improvement with the decay of the existing complications and thus give a good continuity of the reflectors

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Journal Of Computational Innovation And Analytics (jcia)
PERFORMANCE MEASURE OF MULTIPLE-CHANNEL QUEUEING SYSTEMS WITH IMPRECISE DATA USING GRADED MEAN INTEGRATION FOR TRAPEZOIDAL AND HEXAGONAL FUZZY NUMBERS
...Show More Authors

In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function
...Show More Authors

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimating Electricity Generation from Wind Power by V82 at ThiQar – Iraq
...Show More Authors

One of the most demanded studies is wind turbine site assessment. It is difficult to build a simulation program because of the many variables that affect the wind speed and direction. The procedure of this research depend on two approaches, the Wind Atlas Analysis model and the Inverse Distance Wait interpolation. These procedures give the estimated annual energy production for each turbine (V82) with 82m blades diameter at 70m hub heights. The output at this location for each turbine is about (4.3 GWh). The studied area is about 20x20km2 and could be plant at least 600 turbine and have about 2500 GWh of annual energy production.

View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Monitoring of south Iraq marshes using classification and change detection techniques
...Show More Authors

Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft

... Show More
View Publication Preview PDF
Crossref (1)
Crossref