Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed to evaluate effect of each of these variables on estimation process. Two error statistics namely root mean squared error and coefficient of determination were used to measure the performance of the developed models. The results indicated that the model, whose input variables are T, W, and RH, perform the best for estimating evaporation values. In addition, the model which is dominated by (T) is significantly and distinctly helps to prove the predictive ability of fuzzy inference system. Furthermore, agreements of the results with the observed measurements indicate that fuzzy logic is adequate intelligent approach for modeling the dynamic of evaporation process.
The research explored the impact of applying lean thinking With all that carries this term of goals, trends, principles, foundations and concepts, The possibility of applying it in institutions, including Ur public company, an industrial company, And the only one in Iraq specialized in the manufacture of cables, Electrical Wires and the aluminum industry ,Which has been applied to the curriculum of lean thinking , The problem of research is that the institutions, including the company (research sample), adopt and practice traditional administrative, financial and technical methods without relying on modern curricula and ideas, including the subject of our research, In order to achieve the research objectives, the research was divided int
... Show MoreThe widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreNew chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complex
... Show MoreIn this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreThe synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2<
The ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show More