A land magnetic survey was carried out along regional profile, which is located at the north part of the Iraqi western desert. It starts from al –Qaam City (at north) toward Rutba City (at south) with a total length of 238km. The survey was carried out along the paved road between the two cities, About 113 measuring points were done with inter-station distance of 2 km (for 198 km) and 2 to 5km (for 40km). Two proton magnetometers were used in this survey. One of them is used for base station monitoring, which was fixed as of Salah Aldin field (Akkas). Its readings were used for diurnal corrections. All magnetic measurements were corrected for normal and topographic corrections. The readings were reduced to a certain base level. The resulted magnetic anomalies show a good correlation with those of Arial - magnetic survey anomalies conducted by (C.G.G, 1974). This is true for those anomalies with wavelength more than 50km. While the land magnetic survey has shown more small anomalies which may reflect near surface sources. In addition, there is a considerable difference between the magnetic intensity values of both surveys. The downward continuation method was used in this study for detecting the depth of magnetic anomaly source. But before applying this method the total magnetic field was converted to its vertical component using computer program packages. The 2.5 mathematical modeling techniques were used for interpreting magnetic anomaly. Several models were suggested according to the geological and geophysical surface and subsurface data. These models clearly suggest that the tectonic of the studied area may be completely affected by deep faults that could reach the basements or even cut it. These faults resulted in tectonic blocks with relative movements that could happen through the geological time, and they may be responsible for the tectonic features of the western desert. These faults could also responsible for the lateral and vertical variations that are noticed in subsurface rocks of the studied area. The subsurface lateral susceptibility variation between the different blocks could result from the variation in physical parameter of the rocks (like porosity, fracture density…) and there is a possibility that rocks beneath 18km (lower crust) still possess some magnetic properties.
Due to the great evolution in digital commercial cameras, several studies have addressed the using of such cameras in different civil and close-range applications such as 3D models generation. However, previous studies have not discussed a precise relationship between a camera resolution and the accuracy of the models generated based on images of this camera. Therefore the current study aims to evaluate the accuracy of the derived 3D buildings models captured by different resolution cameras. The digital photogrammetric methods were devoted to derive 3D models using the data of various resolution cameras and analyze their accuracies. This investigation involves selecting three different resolution cameras (low, medium and
... Show MoreBackground. “Polyetheretherketone (PEEK)” is a biocompatible, high-strength polymer that is well-suited for use in dental applications due to its unique properties. However, achieving good adhesion between PEEK and hydrophilic materials such as dental adhesives or cement can be challenging. Also, this hydrophobicity may affect the use of PEEK as an implant material. Surface treatment or conditioning is often necessary to improve surface properties. The piranha solution is the treatment of choice to be explored for this purpose. Methods. PEEK disks of 10 mm diameter and 2 mm thickness were used in this study. Those samples were divided into five groups (each group has five samples). The first is the control group, in which no
... Show MoreRecently, several concepts and expressions have emerged that have often preoccupied the world . around the concept of environment and sustainability. This is due to the negative and irresponsible impact of man and his innovations in various industrial and technological fieldsthat have damaged the natural environment. Architecture and cities at the broader level are some of the man made components that caused these negative impacts and in the same time affected by them. What distinguishes architectural and urban projects is the consumption of large . quantities of natural resources and production larger amounts of waste and pollution, along the life of these projects. At the end of the twentieth century and the beginning of the twenty-fir
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreThis study suggests using the recycled plastic waste to prepare the polymer matrix composite (PMCs) to use in different applications. Composite materials were prepared by mixing the polyester resin (UP) with plastic waste, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with varies weight fractions (0, 5, 10, 15, 20 and 25 %) added as a filler in flakes form. Charpy impact test was performed on the prepared samples to calculate the values of impact strength (I.S). Flexural and hardness tests were carried out to calculate the values of flexural strength and hardness. Acoustic insulation and optical microscope tests were carried out. In general, it is found that UP/PV
... Show MoreThe paper presents the results of precise of the calculations of the diffusion of slow electrons in ionospheric gases, such as, (Argon – Hydrogen mixture, pure Nitrogen and Argon – Helium – Nitrogen) in the presence of a uniform electric field and temperature 300 Kelvin. Such calculations lead to the value Townsend's energy coefficient (KT) as a function of E/P (electric field strength/gas pressure), electric field (E), electric drift velocity (Vd), momentum transfer collision frequency ( ), energy exchange collision frequency ( ) and characteristic energy (D/?). The following physical quantities are deduced as function s E/P: mean free path of the electrons at unit pressure, mean energy lost by an electron per collision, mean velocit
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreIn this work, a deep computational study has been conducted to assign several qualities for the graph . Furthermore, determine the amount of the dihedral subgroups in the Held simple group He through utilizing the attributes of gamma.