There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.
Let be a commutative ring with 1 and be a left unitary . In this paper, the generalizations for the notions of compressible module and retractable module are given.
An is termed to be semi-essentially compressible if can be embedded in every of a non-zero semi-essential submodules. An is termed a semi-essentially retractable module, if for every non-zero semi-essentially submodule of an . Some of their advantages characterizations and examples are given. We also study the relation between these classes and some other classes of modules.
Let be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever . In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of their adv
... Show MoreLet be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever .
In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of
... Show MoreLet be a commutative ring with 1 and be left unitary . In this papers we introduced and studied concept P-small compressible (An is said to be P-small compressible if can be embedded in every of it is nonzero P-small submodule of . Equivalently, is P-small compressible if there exists a monomorphism , , is said to be P-small retractable if , for every non-zero P-small submodule of . Equivalently, is P-small retractable if there exists a homomorphism whenever as a generalization of compressible and retractable respectively and give some of their advantages characterizations and examples.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Let R be an associative ring with identity, and let M be a unital left R-module, M is called totally generalized *cofinitely supplemented module for short ( T G*CS), if every submodule of M is a Generalized *cofinitely supplemented ( G*CS ). In this paper we prove among the results under certain condition the factor module of T G*CS is T G*CS and the finite sum of T G*CS is T G*CS.
In this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.
The islamic legitimacy,imposition and of al-zakkat(regular charity) are well
known matters to the whole muslims but being in love with the present life and
worldly existence and being in scare of the death made some of the moslems to lag
behind and delay of keeping with that matter (regular charity) because the mony al
wayes was the reason for the man happiness in the present life allah makes al-zakat
(regular charity) one of the granting remissionns of the moslems people sins in return
for that allah promised the moslems to honored them with the eternal life in in the
paradise where is the gardens beneath which rivers flow so that I decided to write in
this matter of couarse after trust and recommend in god and h