Tin oxide films (SnO2) of thickness (1 ?m) are prepared on glass substrate by post oxidation of metal films technique. Films were irradiated with Nd:YAG double frequency laser of wavelength (532 nm) pulses of three energies (100, 500, 1000) mJ. The optical absorption, transmission, reflectance, refractive index and optical conductivity of these films are investigated in the UV-Vis region (200-900) nm. It was found that the average transmittance of the films is around (80%) at wavelength (550 nm) and showed high transmission (? 90 %) in the visible and near infrared region. The absorption edge shifts towards higher energies, which is due to the Moss-Burstien effect and it lies at (4 eV). The optical band gap increased with increasing of energy.
Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons
There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
A polycrystalline PbxS1-x alloys with various Pb content ( 0.54 and 0.55) has been prepared successfully. The structure and composition of alloys are determined by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) respectively. The X-ray diffraction results shows that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (200) and (111), the grain size varies between 20 and 82 nm. From AAS and XRF result, the concentrations of Pb content for these alloys were determined. The results show high accuracy and very close to the theoretical values. A photoconductive detector as a bulk has been fabricated by taking pieces of prepared alloys and polished chemic
... Show MoreIn this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show More