A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalence (L) of the sequence of period (p) when (L) is greater than (p/2). Several examples are given for conciliated the accuracy of the results of this proposed method.
Recently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512
... Show MorePurpose: The concept of complete street is one of the modern trends concerned with diversifying means of transportation and reducing the disadvantages of mechanical transportation modes. This paper discusses the role of complete streets can play in developing the urban environment in the Alyarmok District of Baghdad. Method/design/approach: The linear regression method used to analyze the opinions of 100 respondents surveyed in the study area in order to find the relationship between the urban environment and the complete street elements. Theoretical framework: The Modern trends in urban planning aim to find alternatives to the policies of traditional transportation planning that focus on vehicular mobi
... Show MoreThe study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show MoreGrain size and shape are important yield indicators. A hint for reexamining the visual markers of grain weight can be found in the wheat grain width. A digital vernier caliper is used to measure length, width, and thickness. The data consisted of 1296 wheat grains, with measurements for each grain. In this data set, the average weight (We) of the twenty-four grains was measured and recorded. To determine measure of the length (L), width (W), thickness (T), weight (We), and volume(V). These features were manipulated to develop two mathematical models that were passed on to the multiple regression models. The results of the weight model demonstrated that the length and width of the grai
The purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show MoreThis paper is an attempt to help the manager of a manufactory to
plan for the next year by a scientific approach, to maximize the profit and آ provide optimal آ monthly quantities of آ production, آ inventory,
work-force, prices and sales. The computer programming helps us to execute that huge number of calculations.
This study investigates the Linguistic and Conceptual equivalence of Conner’s Revised Scales when applied on a Sudanese sample. Sudanese parents and teachers completed behavior-rating scales on a stratified sample of 200 children. These instruments were based on Conner’s parent -48 and teacher-28 questionnaires. Following a reliable translation into Sudanese Arabic the test-retest reliability of the items and the internal consistency of the original Conner’s' revised scales were explored. The associations between scale scores and between parents and teachers scores were also examined. Both instruments displayed good reliability and the original Conners scales had satisfactory internal consistency. The inter-correlation sugg
... Show MoreMarket share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient