Preferred Language
Articles
/
bsj-1298
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
View Publication Preview PDF
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

Crossref (1)
Crossref
View Publication
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Crossref (1)
Crossref
View Publication
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
using collocation method for solving differential equations with time lag

in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach

View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Variational Approximate Solutions of Fractional Delay Differential Equations with Integral Transform

     The idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations.  Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decompos

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF