The aim of this paper is to determine the feasibility of using fluorometric methods as an indicator for quality and contamination of milk with E.coli bacteria, and selection the suitable wavelength to be used with laser induced auto fluorescence. Three groups of milk samples were used in this study: Fresh pasteurized milk samples, milk samples containing different concentration of E.coli bacteria which were added artificially, and milk samples that were kept in refrigerator for 3-5 days. Thirteen excitation wavelengths were used to get the emission spectra for all milk samples using spectroflourometer .The results showed that the emission spectra at 275nm excitation wavelength gave a good differentiation between these three groups. The data analysis demonstrated that the proposed method can bring progress in identification of milk quality and contamination with rapidness, high sensitivity and low cost diagnostic tool. Laser light at this wavelength that transmitted by optical fiber can be used for milk samples examination in situe and for more precise results.
Background: Powerlifters and bodybuilders use anabolic androgenic steroids (AAS) especially – as many as 55 percent of elite powerlifters admitted using these agents. In contrast to numerous documented toxic and hormonal effects of AAS their impact on the structure and function of the left ventricular (LV) was not yet fully understood.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreRoot research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root depth of seedlings using a layer of herbicide (
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
The Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq.
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show More