Liposome-mediated transfection of cancer cells provide a valuable experimental technique to study cellular gene expression and may also be adapted for gene therapy studies. However, the widely recognized advantage of liposome-mediated transfection is high efficiency. Therefore, this study were performed to optimize transfection techniques in human larynx carcinoma cell line Hep-2 using the commercial synthetic lipid TransFast™ Reagent and monitoring the expression efficiency by using the pSV-?-galactosidase Control Vector which encoded ?-galactosidase, maximum transfection efficiency were achieved with TransFast™ Reagent used at the Charge ratios of 2:1 and 0.5 µg DNA/ml, this is indicate that TransFast™ Reagent can be used as an efficient transfection agent to deliver foreign DNA into human larynx carcinoma cell line Hep-2 and expression of the transgene efficiently.
The behaviour of Np-239 during the Continuous extraction and stripping was followed . Three Continuous extraction experiments were carried out . In the first experiment the extraction and stripping were carried out by using Tributyl Phosphate / treated odorless kerosene as the organic phase , while the aqueous phase was uranium and neptunium-239 dissolved in 3M HNO3 . In the second experiment irradiation of organic phase up to 30 M rad were carried out , while keeping the aqueous phase as it is in the first experiment. In the third experiment , the acidity of the aqueous phase was 1.5M instead of 3M and keeping the organic phase as it is in experiment 1. The results obtained in tables 1-3 show the possibility of
... Show MoreBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is still a severe threaft for human health currently, and the researches about it is a focus topic worldwide.
Aim of the study: In this study, we will collect some laboratory results of the patients with coronavirus disease (COVID-19) to assess the function of liver, heart, kidney and even pancreas.
Subjects and Methods: Laboratory results of the patients with COVID-19 are collected. The biochemical indices are classified and used to assess the according function of liver, heart, kidney; meantime, and blood glucose is also observed and taken as an index to roughly evaluate pancreas.
Results: There were some in
... Show MoreCharge transfer in styryl dyes STQ-1, STQ-2,and STQ-3 with organic media system has been studied theoretically depending on the Franck- Condon rule and continuum dielectric model . The reorientation energies (eV) were evaluated theoretically depending on dipole momentum, dielectric constant , and refrective index n. The rate constant of charge transfer has been calculated depending on the reorientation energy (eV) ,effective free energy , potential height barrier , and coupling coefficient . A matlap program has been written to calculated the rate constant of charge transfer and other parameter. The results of calculations show that STQ-2 dye is more reaction for charge transfer compare with STQ-1 and STQ-3 dyes
The study is designed to evaluate the effect of the aqueous extract of the P. lanceolata plant, as well as to know the effect of the drug CCl4 on the formation of micronucleus in vivo 48 female albino mice. In the study mice were separated into eight groups treated intraperitoneally for seven day first group Negative control, second positive control( CCl4 0.02%), third group aqueous extract (250 mg/kg), fourth group aqueous extract (500 mg/kg), fifth group (CCl4 0.02%) plus aqueous extract (250 mg/kg), sixth group (CCl4 0.02%) plus aqueous extract (500 mg/kg), seventh group aqueous extract (250 mg/kg) plus (CCl4 0.02%), and eighth group aqueous extract (500 mg/kg) plus (CCl4 0.02%). The genetic-cellular asp
... Show MoreVarious assays are used to determine the toxic effects of drugs at cellular levels in vitro. One of these methods is the dye exclusion assay, which measures membrane integrity in the presence of Trypan blue. Trypan blue the dye which was used in this study to investigate cytotoxic effect of a new Cis –dichloroplatinum (II) complex [(Qu)2PtCl2] on the viability of polymorphonuclear cells (PMNs). Three concentrations of platinum complex were prepared (70, 35and 17.5 µg/ ml) and the results revealed that the percentage of cell viability decreased as the platinum complex concentration increased in comparison with control.
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreA series of lanthanide metal (???) complexes have been prepared from the new azo ligand, 3-(1-methyl-2-benzimidazolylazo)-Tyrosine (MBT). The structural feature were confirmed on the basis of their elemental analysis, metal content, molar conductance, magnetic measurement, FTIR, 1 HNMR and UV-Vis spectra studies. The isolated complexes were found to have a mole ratio (1:2) (metal:ligand) stoichiometry with the general formula [Ln(MBT)2]Cl (Ln(???) = La, Ce, Pr, Nd, Sm, Eu and Gd). The chelates were found to have octahedral structures. The FTIR spectra shows that the ligand (MBT) is coordinated to lanthanide ions as a N, N, O-tridentate anion via benzimidazole nitrogen, azo nitrogen and oxygen of hydroxyl after deprotonation. Com
... Show MoreIn modern hydraulic control systems, the trend in hydraulic power applications is to improve efficiency and performance. “Proportional valve” is generally applied to pressure, flow and directional-control valves which continuously convert a variable input signal into a smooth and proportional hydraulic output signal. It creates a variable resistance (orifice) upstream and downstream of a hydraulic actuator, and is meter in/meter out circuit and hence pressure drop, and power losses are inevitable. If velocity (position) feedback is used, flow pattern control is possible. Without aforementioned flow pattern, control is very “loose” and relies on “visual” feed back by the operator. At this point, we should examine how this valv
... Show More