In this work we prepared some schiff bases by condensation urea and benzaldehyde or its derevative ( bromo benzaldehyde or hydroxy benzaldehyde ) as ( 1 : 1 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A1 , B1 , C1 , D1 , E1 , F1 , G1 ) and ( 1 : 2 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A2 , B2 , C2 , D2 , E1 , F2 , G2 ) . The prepared compounds identified spectroscopic by infrared spectroscopy FT-IR and Thin layer chromotography T.L.C . The force constant calculated from the wave number for the carbonyl stretching from FT-IR chart and by using the following equation K = 4?2C2?'2? The change in double bond order for carbonyl deteremined in according with some past research by compare the force constant for the prepared compounds with the force constant in past research and calculated bond order statistically by extract the curve equation and calculated the bond order by application curve equation .
The purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
The purpose of our work is to report a theoretical study of electrons tunneling through semiconductor superlattice (SSL). The (SSL) that we have considered is (GaN/AlGaN) system within the energy range of ε < Vo, ε = Vo and ε > Vo, where Vo is the potential barrier height. The transmission coefficient (TN) was determined using the transfer matrix method. The resonant energies are obtained from the T (E) relation. From such system, we obtained two allowed quasi-levels energy bands for ε < VO and one band for ε VO.
Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreTill now, isatin derivatives have received a lot of interest in organic and medicinal chemistry due to their significant biological and pharmacological activities. Schiff’s and Mannich bases of isatins are an effective group of heterocyclic derivatives that play a significant role in medicinal chemistry as antimicrobial agents. In light of these facts, new Schiff bases and Mannich bases of isatin were synthesized. The monomer Mannich bases; 3(a-e) have been synthesized by reacting isatin with different secondary amines, piperidine, morpholine, and pyrrolidine, dimethylamine, diphenylamine, separately, and formaldehyde, while the dimer (5) formed by using piperazine and formaldehyde which then react separately with Phenylhydrazine
... Show MoreStarting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
This work includs synthesis of several Schiff bases by condensation of 6- methoxy – 2- amino benzothiazole with some aldehydes and ketones (2- hydroxyl benzaldehyde, 4- hydroxyl benzaldehyde, 4- N,N –dimethy amino acetophenone, benzophenone) to abtain schiff bases (1-5). These schiff bases were found to react with phthalate anhydride to give oxazepine derivatives (6-10) that were reacted with primary aromatic amines to give Diazepine derivatives (11-15). Besides, we prepared new tetrazole derivatives (16-20) from the reaction of the prepared Schiff bases with sodium azide in the prepared compounds that were characterized by physical properties, FT-IR and some of the 1H-NMR and 13C –NMR spectroscopy.
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.