Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show MoreThe concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.
Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.