This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
Flying Ad hoc Networks (FANETs) has developed as an innovative technology for access places without permanent infrastructure. This emerging form of networking is construct of flying nodes known as unmanned aerial vehicles (UAVs) that fly at a fast rate of speed, causing frequent changes in the network topology and connection failures. As a result, there is no dedicated FANET routing protocol that enables effective communication between these devices. The purpose of this paper is to evaluate the performance of the category of topology-based routing protocols in the FANET. In a surveillance system involving video traffic, four routing protocols with varying routing mechanisms were examined. Additionally, simulation experiments conduct
... Show MoreArtificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex
Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show MoreThis investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreMost companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show MoreAn edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show More