In this study we surveyed the dominant normal stool flora of randomly selected healthy, young (18-23 years old), unmarried (doctrinal) Iraqi college students (males and females) for the carriage of extraintestinal pathogenic E. coli (ExPEC). ExPEC virulence was detected phenotypically by mannose resistant hemagglutination of human red blood cells (MRHA) and mannose sensitive (MS) agglutination of Bakers' yeast (Saccharomyces cerevisceae). From 88 college students, 264 E. coli isolates were obtained (3 isolates per person): 123 from 41 females and 141 from 47 males. Of these isolates, 56% (149/264) caused MS agglutination of yeast cells and 4.16% (11/264) showed MRHA. Eighty two percent (9/11) of the isolates with MRHA also caused MS agglutination of yeast cells. Statistically the difference is not significant (P < 0.05) among males and females regarding the MS agglutination of yeast cells: 59% (72/123) of females' isolates vs. 55% (77/141) of males' isolates. Conversely, the difference is clear regarding the carriage of isolates with MRHA. All the isolates with MRHA were distributed among females' dominant stool flora (11/123: 8.94%) whereas none of the males' dominant stool flora showed MRHA (0/141: 0%). Five females out of 41 (12.19%) had isolates with MRHA. All the three isolates in 2 of these 5 females showed MRHA, 2 isolates in another 2 showed MRHA, and only one isolate in 1 female caused MRHA. Therefore we can say that the difference among males and females in fecal carriage of E. coli ,with characteristics of ExPEC, can be a predisposing factor of females to ExPEC infections more than males.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More