The aim of this work is study the partical distribution function g(r12,r1) for Carbon ion cases (C+2,C+3,C+4) in the position space using Hartree-Fock's Wave function, and the partitioning technique for each shell which is represented by Carbon Ions [C+2 (1s22s2)], [C+3 (1s22s)] and [C+4 (1s2)]. A comparision has been made among the three Carbon ions for each shell. A computer programs (MATHCAD ver. 2001i) has been used texcute the results.
numerical study is applied to the mercury-argon mixture by solving the boltzman transport equation for different mixture percentage.
In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.
The purpose of this work is to determine the points and planes of 3-dimensional projective space PG(3,2) over Galois field GF(q), q=2,3 and 5 by designing a computer program.
The data presented in this paper are related to the research article entitled “Novel dichloro(bis{2-[1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal(II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)” (Conradie et al., 2018) [1]. This paper presents characterization and structural data of the 2-(1-(4-methyl-phenyl)-1H-1,2,3-triazol-1-yl)pyridine ligand (L2 ) (Tawfiq et al., 2014) [2] as well as seven dichloro(bis{2- [1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl-κN3 ]pyridine-κN})metal (II) coordination compounds, [M(L2 )2Cl2], all containing the same ligand but coordinated to different metal ions. The data illustrate the shift in IR, UV/VIS, and NMR (for diamagnetic complexes) peaks wh
... Show MoreFive derivatives of thiadiazole were prepared with aldehydes and alkyl halides, compoundA: 2-amino-5-thiol-1,3,4- thiadiazole, compound B :2-(o-hydroxybenzylidine)amino-5-thiol-1,3,4-thiadiazole, compoundC: 2(2-butan-lidine)amino-5-thiol-1,3,4-thiadiazole, compound E: 2- amino-5-(2-Propanylthio)-1,3,4-thiadiazol) and compound F:2(o-chlorobenzylamino)-5-(2-propanyl thio)-1,3,4 thiadiazol. All prepared compounds were diagnosed by (IR) and (UV) Spectroscopy. All of those compounds were screened for their anti-microbial activity in vitro. The results show that most of the compounds A, B, C exhibited moderate to good activity against Gram-positive bacteria and the same compound exhibit low to moderate activity on most gram-negative bacte
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
In this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
In this paper, we have derived Bayesian estimation for the parameters and reliability function of Perks distribution based on two different loss functions, Lindley’s approximation has been used to obtain those values. It is assumed that the parameter behaves as a random variable have a Gumbell Type P prior with non-informative is used. And after the derivation of mathematical formulas of those estimations, the simulation method was used for comparison depending on mean square error (MSE) values and integrated mean absolute percentage error (IMAPE) values respectively. Among of conclusion that have been reached, it is observed that, the LE-NR estimate introduced the best perform for estimating the parameter λ.