Laser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is treated by Laser beam and Scanning Electron Microscope (SEM) and also we made check for the microstructure by using the light microscope and the SEM for the breaking samples. The results of checking showed that there is an improvement in the fatigue resistance after the treatment by the Laser beam. The results of microscope checking showed that the beginning of the failure is from the surface area and there is more than one level of the break.
This work aimed to prepare and study the characteristic feature of lead nanoparticles (PbNPS) and follow its effects on some physiological aspects in rats.PbNPS was prepared by laser ablation of pure lead mass with a pulse of 500 and 100 mJ of energy. The results indicated that the wavelength was approximately 196 and the concentration was reported at 53,8967 mg / L. AFM, as the average diameter has been estimated at 69.93 nm. EFSEM shows the spherical shape of the particle.The experimental animals (rats) were divided into two groups, with seven rats for each one. The first group was a control and the second group was injected with 1 milliliter of PbNPS (53.8673 mg/l) per day for 45 days. Bioaccumulated lead ( in liver, spleen kidney and
... Show MoreThe effect of laser radiation on human aorta, coronary, and pulmonary arteries, and pulmonary veins has been investigated. Xenon-Chloride (eximer), Nitrogen, and Nd-YAG pulsed lasers of wavelengths 308, 337, and 1060 nm respectively were used. Their effects on fresh postmortem tissues, normal and diseased, was studied. The diameter and depth of ablation of the exposed tissues, in air, were measured as a function of many factors related to the type of laser and nature of the tissue. The effect of properties of the applied lasers, such as average power density and deposited energy density, on the exposed tissue surface were studied. The increase of these two parameters cause an increase in the depth and diameter of ablation. However the di
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
This study evaluated the structural changes of enamel treated by the Regenerate system and carbon dioxide (CO2) laser against acid challenge. Thirty human enamel slabs were prepared and assigned into three groups: Group I: untreated (control); Group II: treated with the Regenerate system; and Group III exposed to CO2 laser. All specimens were subjected to an acid challenge (pH 4.5–7.0) for 14 days. Specimens were evaluated and compared at 120 points using five Raman microspectroscopic peaks; the phosphate vibrations ν1, ν2, ν3, and ν4 at 960, 433, 1029, and 579 cm−1, respectively, and the carbonate at 1070 cm−1, followed by Vickers microhardness test. The ratio of carbonate to phosphate was correlated to the equivalent mic
... Show MoreIn this study Isolated Pathogenic bacteria which causes Tonsillitis in Children with ages between 3-17 years. They are admitted to Central Children Hospital (Al-Karch) and Ebn-Albalady Hospital (Al-Rusafa). 200 cases were collected which include 120 Male and 80 Female. The result of the recent study shows that the isolation percentage was 40% from Male and 35% from Female. In this study Fifty six isolated were Identified, 20 were ?-hemolytic Streptococcus which was Streptococcus pyogenes, formed (36%) from all isolated.6 Pathogenic bacteria were ?- hemolytic Streptococcus which was Streptococcus pneumoniae formed (11%). The number of Moraxella catarrhalis bacteria was 12 formed (21%), the number of Haemophilus influenzae was 1
... Show MoreAtmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreIn this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
In this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show More