Preferred Language
Articles
/
bsj-1123
ON M- Hollow modules

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
Scopus (4)
Scopus Crossref
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
On Closed Rickart Modules

In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.

View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Semiprime RΓ-Submodules of Multiplication RΓ-Modules

Let R be a Γ-ring and G be an RΓ-module. A proper RΓ-submodule S of G is said to be semiprime RΓ-submodule if for any ideal I of a Γ-ring R and for any RΓ-submodule A of G such that or which implies that . The purpose of this paper is to introduce interesting results of semiprime RΓ-submodule of RΓ-module which represents a generalization of semiprime submodules.

Scopus (7)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
e*-Extending Modules

     This paper aims to introduce the concepts of  -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules,  respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Semi – Bounded Modules

Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.

Crossref
View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Essentially Second Modules

In this paper, as generalization of second modules we introduce type of modules namely (essentially second modules). A comprehensive study of this class of modules is given, also many results concerned with this type and other related modules presented.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Supplement Extending Modules

In this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.

View Publication Preview PDF