The buildup factor of cylindrical samples (shields) for Brass, Copper & lead (Brass, Cu, Pb (was studied, where buildup factor were calculated with thickness between (0-12) m.f.p. for Co60 and Cs137sources with activities (30) & (41) MBq respectively , using scintillation detector NaI(T?) with (3"×3")volume .The results shows increases of buildup factor for low atomic number(Z) samples where the energy of radiation source was constant, also shows increases of buildup factor with decreases the energy of radiation source. An empirical equation was obtained using Matlab7 program this equation have agreements with most obtained data for 96%.
This paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreIn this study light elements 10B , 10Be for 10B(n,p)10Be reaction as well as proton energy from 0.987 MeV to 2.028 MeV with threshold energy (1.04MeV) are used according to the available data of reaction cross sections. The more recent cross sections data of 10Be(p,n)10B reaction is reproduced in fin steps in the specified energy range , as well as cross section (p,n) values were derived from the published data of (n,p) as a function of energy in the same fine energy steps by using the reciprocity theory of principle inverse reaction . This calculation involves only the first excited state of 10B , 10Be in the reactions 10Be(p,n)10B and 10B(n,p)10Be.
Microbial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate
... Show MoreA d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.