A computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
The elastic magnetic electron scattering form factors and the magnetic dipole moments have been studied for the ground state of 19C (halo) (JπT= 1/2+ 7/2) nucleus carried out using psd-shell Millener-Kurath (PSDMK) interactions. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this interaction, the core nucleons of 18C nucleus are assumed to move in the model space of spd. The outer halo (1-neutron) in 19C is assumed to move in the pure 2s1/2 orbit. The elastic magnetic electron scattering of the stable 13C and exotic 19C nuclei are investigated through Plane Wave Born Approximation (PWBA). It is found that the difference between the
... Show MoreThe calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.
... Show MoreTotal Electron Content measurements derived from Athens station ionograms (ITEC),
located near Iraq, during the ascending phase of solar cycle 24 (July 2009- April 2010),
according to availability of data, are compared with the latest version of the International
Reference Ionosphere model, IRI-2012 (IRI TEC), using two options (NeQuick, IRI01-
Corr) for topside electron density.
The results obtained from both (ITEC and IRI TEC) techniques were similar, where
correlation coefficients between them are very high. Generally, the IRI predictions
overestimate the ITEC values.
An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
Due to the scientific and technical development in the free electron laser devices and the accompanying industrial and technological progress in various fields of civil and military life, it became necessary to expand the understanding of the mechanism of interaction of electrons (as an effective medium) with the magnetic field that they pass through to form coherent photons.
In this paper, the Lorentz force effect is simulated and analysed. The results showed that the Lorentz force originates from the magnetic field, making the electron move through it oscillate. This sinusoidal motion of the electron causes it to emit two photons for every electron wavelength. It has been concluded that the electron velocity directly affe
... Show MoreAn effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I
The study of Mars's ionosphere was made by investigating the measurements of the electron density (Ne) depending of the variation of the solar activities through different local time, different seasons, and different altitudes. The datasets has been taken from MARSIS on board the Mars Express spacecraft, the investigation for the solar indices and the electron density (Ne) have been made for two period of time depending on the strength of the geomagnetic storms, the first one was taken when the geomagnetic storms was low as in years (1998 & 2005), the data was chosen for three seasons of these years, Winter (December), Summer (June) and Spring (April). The second period was taken for the years (2001 & 2002) when the geomagnetic s
... Show MoreThe study of Mars's ionosphere was made by investigating the measurements of the electron density (Ne) depending of the variation of the solar activities through different local time, different seasons, and different altitudes. The datasets has been taken from MARSIS on board the Mars Express spacecraft, the investigation for the solar indices and the electron density (Ne) have been made for two period of time depending on the strength of the geomagnetic storms, the first one was taken when the geomagnetic storms was low as in years (1998 & 2005), the data was chosen for three seasons of these years, Winter (December), Summer (June) and Spring (April). The second period was taken for the years (2001 & 2002) when the geomagnetic s
... Show MoreThe power factors and electronic thermal conductivities in bismuth telluride (Bi2Te3), lead-telluride (PbTe), and gallium arsenide (GaAs) at room temperature (300K) quantum wires and quantum wells are theoretically investigated. Our formalism rigorously takes into account modification of these power factors and electronic thermal conductivities in free-surface wires and wells due to spatial confinement. From our numerical results, we predict a significant increase of the power factor in quantum wires with diameter w=20 Ã…. The increase is always stronger in quantum wires than in quantum wells of the corresponding dimensions. An unconfined phonon distribution assumed based on the bulk lattice thermal conductivity is then employed
... Show More