Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
The purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
In most of Beckett’s plays , there are prominent elements of absurdity that are landmarks of his style and the way of his writing like : the physical and the spiritual decay of characters, the disintegration of language as it becomes no longer a means of human communication because there is an inability to establish any kind of mental contact among them. These elements are quite apparent in Beckett’s “All That Fall”. The play exhibits a list of conflicts: one is between powerful forces as that between the force of life represented by Maddy and the forces of death represented by Dan .The second is the conflict and contempt between the old generation and the new one in the case of Dan’s desire to kill the boy fetching
... Show MoreLet M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
The encoding of long low density parity check (LDPC) codes presents a challenge compared to its decoding. The Quasi Cyclic (QC) LDPC codes offer the advantage for reducing the complexity for both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank deficient parity matrix over the codes of full rank parity matrix is investigated.
In this paper, we introduced some fact in 2-Banach space. Also, we define asymptotically non-expansive mappings in the setting of 2-normed spaces analogous to asymptotically non-expansive mappings in usual normed spaces. And then prove the existence of fixed points for this type of mappings in 2-Banach spaces.
Objective: study aims to identify the diabetes type2 clients self management skills toward dietary pattern
, and find out the relationship between variables which are (Age, gender, educational level, duration of DM
diagnosis, and monthly income) with diabetes type 2 clients self management skills toward dietary pattern
Methodology: descriptive study was carried out through the present investigation from January 2nd
2011to September 2nd 2011 in order to achieve the objectives of the present study. A non probability
(purposive) sample, (200) cases which consists of clients who were attending Al-Nasiriyha diabetic center.
Including (118) males and (82) females. The data were collected by utilization of the study instrument
Let