Five serological methods for detection of Brucella were compaired in this study, Four of the methods are commonely used in the detections:- 1-Rose-Bengal: as primary screening test which depends on detecting antibodies in the blood serum. 2-IFAT: which detects IgG and IgM antibodies in the serum. 3-ELISA test: which detects IgG antibodies in the serum. 4-2ME test: which detects IgG antibodies The fifth methods. It was developed by a reasercher in one of the health centers in Baghdad. It was given the name of spot Immune Assay (SIA). Results declares that among (100) samples of patients blood, 76, 49, 49, 37, and 28. samples were positive to Rose Bengal, ELISA, SIA, 2ME and IFAT tests, respectively. When efficiency, sensitivity and specificity of the serological methods were compaired, the Following results were obtained: a) ELISA and SIA were superiors among the other confirming methods (2ME and IFAT) in detecting the highest cases (49 cases); 46 of them were from the (76) cases positive to Rose Bengal The confirmatory test 2ME was not efficient in detecting low concentrations of IgG antibodies when less than half (37) of the total positive cases (76) were detected by this test. b) IFAT test was the least efficient confirmatory test among all other test. c) As a new confirmatory test, SIA proved to be an efficient and serological test for Brucella detection in comparison with other tests. It is an easy to use test, rapid and could be performed without need to the expensive equipment .
Background: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreCladosporium sp. plays an important role in human health, it is one of the pathogenic fungi which cause allergy and asthma and most frequently isolated from airborne spores. In this study, a couple of universal PCR primers were designed to identify the pathogenic fungi Cladosporium sp. according to conserved region 5.8S, 18S and 28S subunit ribosomal RNA gene in Cladosporium species. In silico RFLP-PCR were used to identify twenty-four Cladosporium strains. The results showed that the universal primer has the specificity to amplify the conserved region in 24 species as a band in virtual agarose gel. They also showed that the RFLP method is able to identify three Cladosporium spe
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show More