Atotal of 75 different clinical samples were collected from different hospitals in Baghdad Biochemical and morphological characterization tests showed that forty isolates were identified as Staphylococcus aureus Antibiotic susceptibility tests of all isolates towards ten antibiotics were carried out and results showed that many isolates (97.5 %) were resistant to ?-lactam antibiotic , 70 % were resistant to Tetracyclinee , 62.5% were resistant to co-trimoxazole , 60 % were resistant to ciprofloxacin , 55% were resistant both of chloramphenicol and erythromycin , 52.5% were resistant to gentamicin , 35% were resistant to rifampicin , 10% were resistant to vancomycin . According to the above results the S.aureus I1 which is isolated from patients with osteomyelitis showed resistant to all ten antibiotics therefore was used in the followed experiments. The minimum inhibitory concentration (MIC) of S.aureus I1 vancomycin, cefotaxim , penicillin G, amoxicillin , ciprofloxacin , co-trimoxazole ,gentamicin, rifampicin was checked.The results showed that isolates had MIC between (390-12500) ?g/ml. The combination of different antibiotics with vancomycin showed synergistic effect based on the Fractional inhibitory concentration index (FIC).
In the last years of the twentieth century, scholars solidly focused on paradiplomacy as a study subject, linking it to federalism and decentralised systems. In the Arab world, which has 22 countries, a few states have adopted federalism or decentralisation. Only five countries, i.e., 22.7%, have adopted federalism and decentralised experience. Therefore, limited research and academic work has been conducted regarding paradiplomacy. This paper aims to research the relationship between federalism and paradiplomacy conceptually and practically and then analyse the Arab experiences in federalism and whether they applied paradiplomacy and succeeded in doing so. To explore that, the paper studies and compares the related articles of constitution
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MorePhotonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer
... Show MoreRecent population studies have shown that placenta accreta spectrum (PAS) disorders remain undiagnosed before delivery in half to two-thirds of cases. In a series from specialist diagnostic units in the USA, around one-third of cases of PAS disorders were not diagnosed during pregnancy. Maternal
This review delves deep into the intricate relationship between urban planning and flood risk management, tracing its historical trajectory and the evolution of methodologies over time. Traditionally, urban centers prioritized defensive measures, like dikes and levees, with an emphasis on immediate solutions over long-term resilience. These practices, though effective in the short term, often overlooked broader environmental implications and the necessity for holistic planning. However, as urban areas burgeoned and climate change introduced new challenges, there has been a marked shift in approach. Modern urban planning now emphasizes integrated blue-green infrastructure, aiming to harmonize human habitation with water cycles. Resil
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreThe aim of this paper is to present a weak form of -light functions by using -open set which is -light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of -totally disconnected and inversely -totally disconnected function have been defined, some examples and facts was submitted.
This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show More
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show More