The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
The aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (= 2.93, 3.91 and 4.89) and different cut depth (= 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration
... Show MoreIn this paper, a hybrid image compression technique is introduced that integrates discrete wavelet transform (DWT) and linear polynomial coding. In addition, the proposed technique improved the midtread quantizer scheme once by utilizing the block based and the selected factor value. The compression system performance showed the superiority in quality and compression ratio compared to traditional polynomial coding techniques.
The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreReconstruction in Iraq requires coherent legitimate frameworks that are able to detail obligations, rights and responsibilities of the parties participating in reconstruction projects, regardless their type or delivery system.
Conditions of Contract can be considered an important component of these frameworks. This paper investigates flexibility and appropriateness of the application of Iraqi conditions of contract in reconstruction projects. These conditions were compared to FIDIC Conditions. The objective wasn't comparing individual clauses, but rather exploring the principles and philosophy laying behind each conditions, and to what extent each conditions care about realizing equity between main contract parties. Validity of applic
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
Extension of bandwidth for high reflectance zone for the spectral region (8-14pm) was studied adapting the concept of contiguous and overlapping high reflectance stacks. Computations was carried out using the modified characteristic matrix theory restricted to near-normal incidence of light on dielectric , homogenous and isotropic symmetrical stack. Certain precautions must be taken in the choice of stacks to avoid deep —reflectance minima from developing within the extended high reflectance region. Results illustrate that the techniques of extending the high reflectance regions are applicable not only to mirrors , but also to short-and long-edge filter and to narrow band pass filters.
It is useful to analyze any optical system theoretically before proceeding with its design in order to ensure the effectiveness of the design through computer simulations that are important and useful in designs for the ability to predict the performance of solar concentrator under any conditions. For this design, non-sequential ray tracing mode wasused in the Zimax program with a light source that simulated solar radiation. The purpose of the design of a compound parabolic concentrator (CPC) is to take advantage of the solar radiation that falls on it without the need for an efficiently tracked system within certain limits of the angle of solar radiation fall known as the acceptance angle. 
... Show More