The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. Existing research used metaheuristic algorithm to solve tak scheduling problem, however, must of the existing metaheuristics used suffers from falling into local mina due to their inefficiency to avoid unfeasible region in the solution search space. Therefore, there is a dire need for an efficient metaheuristic algorithm for task scheduling. This study proposed an FPA-ISFLA task scheduling model using hybrid flower pollination and improved shuffled frog leaping algorithms. The simulation results indicate that the FPA-ISFLA algorithm is superior to the PSO algorithm in terms of makespan time, resource utilization, and execution cost reduction, especially with an increasing number of tasks.
Two simple methods spectrophotometric were suggested for the determination of Cefixime (CFX) in pure form and pharmaceutical preparation. The first method is based without cloud point (CPE) on diazotization of the Cefixime drug by sodium nitrite at 5Cº followed by coupling with ortho nitro phenol in basic medium to form orange colour. The product was stabilized and measured 400 nm. Beer’s law was obeyed in the concentration range of (10-160) μg∙mL-1 Sandell’s sensitivity was 0.0888μg∙cm-1, the detection limit was 0.07896μg∙mL-1, and the limit of Quantitation was 0.085389μg∙mL-1.The second method was cloud point extraction (CPE) with using Trtion X-114 as surfactant. Beer
... Show MoreIn this paper, the reliability and scheduling of maintenance of some medical devices were estimated by one variable, the time variable (failure times) on the assumption that the time variable for all devices has the same distribution as (Weibull distribution.
The method of estimating the distribution parameters for each device was the OLS method.
The main objective of this research is to determine the optimal time for preventive maintenance of medical devices. Two methods were adopted to estimate the optimal time of preventive maintenance. The first method depends on the maintenance schedule by relying on information on the cost of maintenance and the cost of stopping work and acc
... Show MoreAbstract
The aim of the research is to introduce the international standards of the Supreme audit Institutions, as well as the role of these standards in achieving administrative reform and improving the performance of the Supreme audit Institutions and the performance of the economic units under its control.
In order to achieve the objectives of the research, a questionnaire was designed from two main axes that included a number of questions addressed to a number of officials and employees of the Supreme Audit Institutions and its affiliated bodies on the role of applying the international standards of the Supreme Audit Institutions in achieving administrative re
... Show MoreMetaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char
... Show MoreThis experiment was conducted in order to estimate azulene and apigenin in chamomile flowers. Ethanol extracts were examined singly or in combination with some drugs in their biological activity against some pathogens causing skin infection. Ethanol extract was applied at a concentration of 40 mg/ml for the treatment of induced skin infection of mice. Among the topicals used, Claforan was found the most effective on microorganisms causing skin diseases; ethanol extract was more effective than the drug Candimazole solution 1%. HPLC was used for the determination of azulene and apigenin active compounds of chamomile plant.
The Research aims to investigate into reality in terms of planning and scheduling management process for sake the implementation and maintenance of irrigation and drainage projects in the Republic of Iraq, with an indication of the most important obstacles that impede the planning and scheduling management process for these projects and ways of addressing them and minimizing their effects. For the purpose of achieving the goal of the research, a sci
... Show MoreThis paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More