<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, torque, and flux in sensorless DFOCIM drive. Furthermore, optimized UKF present higher performance of state estimation than optimized EKF under different motor operating conditions.</span>
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreOptimization of gas lift plays a substantial role in production and maximizing the net present value of the investment of oil field projects. However, the application of the optimization techniques in gas lift project is so complex because many decision variables, objective functions and constraints are involved in the gas lift optimization problem. In addition, many computational ways; traditional and modern, have been employed to optimize gas lift processes. This research aims to present the developing of the optimization techniques applied in the gas lift. Accordingly, the research classifies the applied optimization techniques, and it presents the limitations and the range of applications of each one to get an acceptable level of accura
... Show MoreThe preparation of activated carbon (AC) from date stones by using microwave assisted K2CO3 activation was investigated in this paper. The influence of radiation time, radiation power, and impregnation ratio on the yield and methylene blue (MB) uptake of such carbon were studied. Based on Box-Wilson central composite design, two second order polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum coditions of 8 min radiation time, 660 W radiation power and 1.5 g/g impregnation ratio gave 460.123 mg/g MB uptake and 19.99 % yield. The characteristics of the AC were examined by pore structure analysis, and scan
... Show MoreMulti-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreKlebsiella pneumoniae is among the most frequent microorganisms isolated from infections of burn wounds. This cross-sectional study aimed to investigate the distribution of multi-drug resistant (MDR) K. pneumoniae in two burn hospitals and the antibiotic resistance profile in different burn regions of the same patient. It was performed in two hospitals (Al-Zahraa and Al-Karama) in Al-Kut, Iraq, between January and May 2022. Totally, 100 burn swabs were collected from 40 patients of both genders suffering from burn wound infections, with ages ranging between 3 and 50 years. Klebsiella pneumoniae were isolated and identified using conventional methods followed by VITEK®2 system and confirmed via polymerase chain reaction targeting t
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show More