Preferred Language
Articles
/
bijps-929
Formulation and Characterization of Itraconazole as Nanosuspension Dosage Form for Enhancement of Solubility
...Show More Authors

Abstract

            Itraconazole is a triazole antifungal given orally for the treatment of oropharyngeal and vulvovaginal candidiasis, for systemic infections including aspergillosis, candidiasis,  and for the prophylaxis of fungal infections in immunocompromised patients.

           The study aimed to formulate a practical water-insoluble Itraconazole, with insufficient bioavailability as nanosuspension to increase aqueous solubility and improve its dissolution and oral bioavailability.

          Itraconazole nanosuspension was produced by a solvent-antisolvent nanoprecipitation method in the presence of different stabilisers (Poloxamer-188, HPMCE5) at different ratios with the drug alone or combination with surfactant(tween 80, SLS).

         The results exhibit that the particle sizes of all prepared itraconazole formulations were in the nano size.  The best formula (F6) has a particle size.  ( 42  ) nm and Zeta potential of (- 21.86 ) mV.  In vitro cumulative release from the nanosuspension was (88 %) at (30) min when compared to the pure drug (13%) and lyophilized nanoparticles (98.2%) at (30)min. Effect of different parameters was investigated.

          Fourier transforms infrared spectroscopy(FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD), Scanning electron microscope( SEM) was done for the optimized  nanoparticles prepared by lyophilization technique

        Thus, Nanosuspension appears to be an encouraging approach to formulate Itraconazole nanosuspension with high solubility and dissolution rate.

 

 

 

 

 

 

 

Keywords: Itraconazole, Nanoprecipitation method, Nanosuspension

         

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref