Gum Arabic is a natural gummy exudate gained from the trees of Acacia species (Acacia senegal and Acacia seyal), Family: Fabaceae. Gum Arabic considers as a dietary fiber with a high percentage of carbohydrates and low protein content. Sugars arabinose and ribose were originally discovered and isolated from gum Arabic and it is representing the original source of these sugars. A gum emanation from trees occurs under stress conditions such as heat, poor soil fertility, drought, and injury. Mainly gum is produced in belt region of Africa, mainly Sudan, Chad, and Nigeria. In the food industry, it is used in confectionery; in the pharmaceutical industry, it is used as emulsifier, film coating and others. Traditionally the gum used for chronic renal failure, digestive discomfort, and others. Although gum Arabic considered as an inert substance, recent information demonstrated multiple pharmacological and medical effects, such as weight reduction, antihypertensive, antihyperlipidemic, anticoagulant, antibacterial, antidiabetic, anti-inflammatory, nephroprotective and other effects.
This review is concluded of 8-Hydroxyquinline (8HQ) compound and derivatives which has a very significant interests with a strong fluorescence , furthermore the relationship between divalent metal ions and characteristic of chelating . In the same way coordinated features have increase of its organic action and inorganic behavior by giving many samples of compounds which are a good chelating agents ligands with more capable of forming very stable complexes.Therefore, the role of (8HQ) is not limited on complexes only but its applications in different fields so this review will focus on demonstration preparation methods and properties of (8HQ) derivatives with their complexes and applications, hopefully that we will cover a part of scientifi
... Show MoreThis article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurement
... Show MoreThe power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Self-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreFibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
Due to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.