In this paper we proposed the method of X-ray fluorescence (XRF) determination of some essential trace elements in medicinal herbs and vitamin-mineral complexes at the level of 100-101 mg/ml. To increase sensitivity and selectivity of the determination we simple and effective approach based on the extraction of metal ions from aqueous solutions with chemically modified polyurethane foam sorbents followed by direct XRF analysis. The conditions of sorption preconcentration of Co(II), Ni(II) and Zn(II) ions with modified sorbents were optimized. The proposed approach is used for the determination of trace elements in several kinds of medicinal herbs (coltsfoot leaves, nettle leaves and yarrow herb) and vitamin-mineral complexes («Alfavit», «Vitrum» and «Multi-tabs»).
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreThis research aims to use chemical reaction to determine some of beta lactam antibiotics which include cephalexin and ceftriaxone in some pharmaceuticals by formation Prussian Blue complexes and using them for the UV-Vis., determination of drugs at wavelengths range (700- 720)nm by reaction them with FeCl3 in the presence of reagent K3[Fe(CN)6] in acid media . The optimal experimental conditions for the complex formation have been studied such as volume of HCl , K3[Fe(CN)6] , FeCl3 ,temperature and reaction time .Analytical figures of merits obtained on applying the developed procedure for cephalexin and ceftriaxone resp. are Linearity,(2-10),(1-7)?g.ml-1 LOD(0.0601,0.0330) ?g.ml-1. The de
... Show MoreNitroso-R-salt is proposed as a sensitive spectrophotometric reagent for the determination of paracetamol in aqueous solution. The method is based on the reaction of paracetamol with iron(III) and subsequent reaction with nitroso-R-salt to yield a green colored complex with maximum absorption at 720 nm. Optimization of the experimental conditions was described. The calibration graph was linear in the concentration range of 0.1 – 2.0 ?g mL-1 paracetamol with a molar absorptivity of 6.9 × 104 L mol-1 cm-1. The method was successfully applied to the determination of paracetamol in pharmaceutical preparations without any interference from common excipients. The method has been statistically evaluated with British Pharmacopoeia method a
... Show MoreThe main objective of this paper is to develop and validate flow injection method, a precise, accurate, simple, economic, low cost and specific turbidimetric method for the quantitative determination of mebeverine hydrochloride (MbH) in pharmaceutical preparations. A homemade NAG Dual & Solo (0-180º) analyser which contains two identical detections units (cell 1 and 2) was applied for turbidity measurements. The developed method was optimized for different chemical and physical parameters such as perception reagent concentrations, aqueous salts solutions, flow rate, the intensity of the sources light, sample volume, mixing coil and purge time. The correlation coefficients (r) of the developed method were 0.9980 and 0.9986 for
... Show MoreTrimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used.
Chemical analysis for evaluation of Nigella sativa L. (black cumin) seeds showed a composition of Fat 39% ; Protein 28% ; Carbohydrate 21% ; Moisture 6% and Ash 4.5% . It was found that the black seed contains the following mineral element : Magnesium 0.26 gm /100gm seed ; Calcium 0.25 gm /100gm seed and Iron 25 ?g / gm /100gm seed ; zinc 4.51?g /gm /100gm seed and Copper 3.60 ?g /gm /100gm seed. The analysis also showed that mineral element I. e. ; lead ; Cobalt ; Nickel ; Chrom ; Cadmium and Aresenic are not present . It was found that the fat of the black seed contains the following fatty acids : Myristic 2.8%; Palmtic 16.6%; Stearic 0.8 % ; Oleic 13.79% ; Linoleic 64.2% and Arachidic 1.9% .