ABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coating material and
presence of additive(PEG4000). The 2:1 core : wall ratio was compared (in weight equivalent to 300mg and 600mg drug)
with Fenbid® spansule capsule 300mg and Balkaprofen® tablet 600mg respectively. It was found that the release of drug
from selected ratio and Balkaprofen® tablet was more or less similar(P 0.05) .This sustained release ratio was
encapsulated in weight equivalent to 300mg drug to be administered once daily (600mg) as two capsules as the reference.
The capsules were stable within 6 months of storage at room temperature.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More