Many reports confirm ulcers as an adverse effect of drugs such as nicorandil and aspirin. The exact responsible mechanisms of ulceration have until now not proved. Mucosal ulcers associated with the onset of ulcer are manifested by an increase in proinflammatory cytokine, excessive prostaglandin, and up-regulation of Endothilin-1 level, which directly impacts the release of leptin. These, released locally within mucosal tissues, have played a role in controlling the extent of local inflammatory responses and processes of mucosal repair.
This study was designed to find out the correlation of plasma leptin and prostaglandin levels as a possible mechanism of oral ulcer formation as an adverse effect of nicorandil. The effect of nicorandil for inducing ulceration was assessed. The plasma leptin and prostaglandin E2 for the tested groups in relation to the studied parameters (gender, and daily body weight change) were estimated in albino rats.
Nicorandil causes mucous membrane damage, inflammation, and ulceration. A significant reduction of plasma leptin level, which was dose-dependent, and a non-significant reduction of serum prostaglandin E2 level. The mechanisms of ulcer induction as an adverse effect of nicorandil can be related to dose-dependant leptin and prostaglandin E2 levels, which affects on repair and healing process.
Keywords: Nicorandil, Leptin, Prostaglandin E2, Ulcer.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreSand production in unconsolidated reservoirs has become a cause of concern for production engineers. Issues with sand production include increased wellbore instability and surface subsidence, plugging of production liners, and potential damage to surface facilities. A field case in southeast Iraq was conducted to predict the critical drawdown pressures (CDDP) at which the well can produce without sanding. A stress and sanding onset models were developed for Zubair reservoir. The results show that sanding risk occurs when rock strength is less than 7,250 psi, and the ratio of shear modulus to the bulk compressibility is less than 0.8 1012 psi2. As the rock strength is increased, the sand free drawdown and depletion becomes larger. The CDDP
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreSoftware-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou
... Show MoreIn this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature o
... Show MoreThis paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show More