Preferred Language
Articles
/
bijps-2542
Serum Soluble Angiotensin-Converting Enzyme-2 Level and Its Potential Association With The Renin-Angiotensin-Aldosterone System in Non-Hypertensive Iraqi COVID-19 Patients: An Observational Study
...Show More Authors

Background: The novel coronavirus disease (COVID-19) is caused by Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) which utilizes angiotensin converting enzyme2 (ACE2) to invade the host cells. This membrane-bound peptidase is widely distributed in the body; its activity antagonizes the renin-angiotensin-aldosterone system (RAAS). Once SARS-Cov2 enters the cell, it causes downregulation of ACE2, resulting in the unopposed activation of RAAS. The unregulated activity of the RAAS system can deteriorate the prognosis in COVID-19 patients. A soluble form of ACE2 (sACE2) was reported to have a role in the SARS-Cov2 invasion of the susceptible cells.

Aim of the study: This study aims to investigate the potential association of serum levels of sACE2 and RAAS components in severe COVID-19 patients compared to healthy individuals.

Methods: Eighty-five participants enrolled in the study were grouped into 45 non-hypertensive severe COVID-19 patients and 40 healthy individuals with comparable age and gender. Serum levels of sACE2, renin, angiotensin 2, and aldosterone by ELISA, and serum potassium level was measured by turbidimetric method.

Results: The results showed a significant difference in the serum levels of sACE2 (lower), renin, angiotensin 2, and aldosterone (higher) in COVID-19 patients compared to the control subjects (p-value <0.001; for all.

Conclusion: Non-hypertensive severe COVID-19 patients have lower sACE2 and higher RAAS peptide levels, and they can serve as diagnostic markers of severe COVID-19 patients.

Recommendations: we recommend a future study with a larger sample size that enrolls COVID-19 patients with different severity levels.

Keywords: Aldosterone, Angiotensin, COVID-19, Renin, Soluble angiotensin converting enzyme 2

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 01 2024
Journal Name
Journal Of Physics: Conference Series
Effect of Sulfur on Characterization of AgInSe<sub>1.8</sub>S<sub>0.2</sub> Thin Film and n-AgInSe<sub>1.8</sub>S<sub>0.2</sub> / p-Si Solar Cell
...Show More Authors

Abstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Nov 19 2020
Journal Name
Indonesian Journal Of Chemistry
Determination of Eugenol in Personal-Care Products by Dispersive Liquid-Liquid Microextraction Followed by Spectrophotometry Using &lt;i&gt;p&lt;/i&gt;-Amino-&lt;i&gt;N,N&lt;/i&gt;-dimethylaniline as a Derivatizing Agent
...Show More Authors

Two simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref