It is important to note that Posaconazole (POCZ) is a newly developed extended-spectrum triazole that belongs to BCS class II and has a solubility of less than 1µg/ml. In patients with a weakened immune system, POCZ has been shown to be effective as an antifungal treatment for invasive infections caused by candida and aspergillus species. The nano-micelles technique can be used to increase POCZ solubility. In order to increase their apparent solubility in water, nano-micelles are made by combining macromolecules that self-assemble into ordered structures capable of entrapping hydrophobic drug molecules in the interior domain. Dispersed colloidal systems, of which nano-micelles are a subset, are a large and diverse group. Composed of a phase that is itself dispersed throughout a medium (continuous phase). Surfactants form a colloidal solution when their concentration in solution is higher than their critical micelle concentration (CMC). POCZ nano-micelles are made with TPGS and tween 80. In this study, we prepared six different formulations and analyzed their particle size, polydispersity index (PDI), entrapment efficiency (EE), drug loadings (DL), saturation solubility, and in-vitro release. The drug-loaded nano-micelles of the Posaconazole formula (POCZ6) were characterized, and their properties were found to be: Particle size (90.68 nm), PDI (0.27), EE (94%), DL (10.3%), and best solubility factor (1133) are all better in the TPGS: tween80(1:5:3) ratio than in the pure drug. An in-vitro release study was conducted, and the results showed that the chosen formula POCZ6 released the entire dose of drug in 70 minutes, compared to only 23% for pure drug. Fourier transform infrared microscopy and other forms of investigation (FTIR). As can be seen from the data, there are no interactions or changes in the major peaks of Posaconazole when it is combined with polymer and surfactant.
Health and environmental factors as well as operational difficulties are major challenges facing the development of an anaerobic digestion process. Some of these problems relate to the use of sludge collected from primary and secondary clarifier units in wastewater treatment plants for laboratory purposes.
The present study addresses the preparation of sludge for laboratory purposes by using a mixture that consists of the digested sludge, which is less pathogenic, compared to the collected sludge from the primary or secondary clarifier, and food wastes. The sludge has been tested experimentally for 19 and 32 days under mesophilic conditions. The results show a steady methane production rate from the anaerobic dig
... Show MoreThree ligands were prepared, spectroscopic method and elemental analysis verified their structures. The L1 and L2 ligands are flavylium salts while the third one L3 is a Flavon. The reactions between transition metal salts and the ligands have synthesized two groups of new metal complexes, one group contains L1, L3 coordinated with the metal ion. The other group contains L2, L3 and the metal. These complexes have been identified by available spectroscopic tools (UV-Visible and IR), the C.H.N results confirmed the proposed structures. The experimental data disclosed that the complexes were coordinated by 6the coordinate with mono-and bidentate ligands forming octahedral structure, in which L3 acts as monodentate and L1, L2 as bidentate ligan
... Show MoreA metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The
... Show MoreInfographics have the capability to organize and display information in a way that is easy for viewers to retrieve and make observations. While infographics have been successful in various fields, their potential benefits in composition writing have not been explored. The primary objective of this study is to investigate the perspectives of Iraqi EFL students who used infographics as an educational technology tool in composition writing, and to identify how gender influences students’ performance when using infographics in EFL writing classes. The significance of this study lies in its integration of infographics as an educational technology tool for teaching writing, aligning with the current trend of technology integration in educati
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreExcessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the ps
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreThe economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show More