Background: The anticancer impact of Epigallocatechin gallate (EGCG) the highly active polyphenol of green tea was abundantly studied. Though, the exact mechanism of its cytotoxicity is still under investigation. Objectives: Hence, the current study designed to investigate the molecular target of EGCG in HepG2 cells on thirteen autophagy- and/or apoptosis- related genes. Methods: The apoptosis detection analyses such as flow cytometry and dual apoptosis assay were used. The genes expression profile was explored by the real-time quantitative-PCR. Results: EGCG increases G0/G1 cell cycle arrest and the real-time apoptosis markers proteins leading to stimulate apoptosis in 70% of the treated HepG2 cells. The up-regulation was recorded in two of autophagy inhibitory genes (FOS-1, FOS-2) and apoptosis inducer gene (DDIT3). While the other ten genes expressed down-regulation after treatment. The down regulation was manifested in the genes of mitochondrial autophagy marker proteins (BNIP3, BNIP3L, and NBR1), the autophagy regulator genes (BIRC5, MAPK9), and the gene that implicated in protein biosynthesis and protein modification (ITGB1). The genes that have pro-apoptotic function in cells (CAPNS1, CFLAR, EIF4G, and RB1) were also showed down-regulation after treatment. Conclusion: Thus, the results demonstrated a potential effect of EGCG to induce apoptosis rather than autophagy in the treated HepG2 cells that could play a good target for therapy.
In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
Abstract
The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg
... Show MoreIn this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreUrban agriculture is one of the important urban uses of land in cities since the inception of cities and civilizations, but the great expansion of cities in the world during the twentieth century and the beginning of the twentieth century and the increase in the number of urban residents compared to the rural population has led to a decline in this use in favor of other uses.
This decline in agricultural and green land areas in cities has negatively affected the environment, natural life and biological diversity in cities in addition to the great impact on the climate and the increase in temperatures and the negative impact on the economic side, since urban agriculture is an important pillar of the economy, especially
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o