The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method) involved using three different solvents which are absolute ethanol, 50% aqueous ethanol and water for both extraction methods using room temperature and direct heat respectively. Crude extracts of two tea samples that obtained from two methods were fractionated by using two solvents with different polarity (chloroform and ethyl acetate). Qualitative and quantitative determinations of epicatechin in tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and the quantity of epicatechin was determined in all ethyl acetate fractions of two tea samples. This research revealed the existence of epicatechin in black and green tea according to TLC and HPLC. Aqueous ethanol 50% was the best solvent for extraction of epicatechin from leaves of tea. Quantitative estimation of epicatechin by HPLC revealed that ethyl acetate fraction of DGTAE contains the higher concentration of epicatechin than other analyzed fractions. Conclusion, tea is an excellent source of catechins particularly epicatechin that possessed various pharmacological effects.
Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreAbstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
In this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
The goal of this experimental study is to determine the effects of different parameters (Flow rate, cuttings density, cuttings size, and hole inclination degree) on hole cleaning efficiency. Freshwater was used as a drilling fluid in this experiment. The experiments were conducted by using flow loop consist of approximately 14 m (46 ft) long with transparent glass test section of 3m (9.84 ft.) long with 4 inches (101.6 mm) ID, the inner metal drill pipe with 2 inches (50.8 mm) OD settled with eccentric position positive 0.5. The results obtained from this study show that the hole cleanings efficiency become better with high flow rate (21 m3/hr) and it increase as the hole inclination angles increased from 60 to 90 degree due to dominated
... Show More