The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method) involved using three different solvents which are absolute ethanol, 50% aqueous ethanol and water for both extraction methods using room temperature and direct heat respectively. Crude extracts of two tea samples that obtained from two methods were fractionated by using two solvents with different polarity (chloroform and ethyl acetate). Qualitative and quantitative determinations of epicatechin in tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and the quantity of epicatechin was determined in all ethyl acetate fractions of two tea samples. This research revealed the existence of epicatechin in black and green tea according to TLC and HPLC. Aqueous ethanol 50% was the best solvent for extraction of epicatechin from leaves of tea. Quantitative estimation of epicatechin by HPLC revealed that ethyl acetate fraction of DGTAE contains the higher concentration of epicatechin than other analyzed fractions. Conclusion, tea is an excellent source of catechins particularly epicatechin that possessed various pharmacological effects.
Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreThis study aims to conduct an exhaustive comparison between the performance of human translators and artificial intelligence-powered machine translation systems, specifically examining the top three systems: Spider-AI, Metacate, and DeepL. A variety of texts from distinct categories were evaluated to gain a profound understanding of the qualitative differences, as well as the strengths and weaknesses, between human and machine translations. The results demonstrated that human translation significantly outperforms machine translation, with larger gaps in literary texts and texts characterized by high linguistic complexity. However, the performance of machine translation systems, particularly DeepL, has improved and in some contexts
... Show MoreIn this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show MoreSeeds of five cultivars of oats (Avena sativa) were introduced from Italy in 2009. Seeds were propagated on the farm of the Dept. of Field Crops Sci. / Coll. of Agric. / Univ. of Baghdad in the season 2009 – 2010. The cultivars Anatolia, Alguda, Hamel, Pimula and Genzania were planted under 3 irrigation intervals; 3, 4 and 5 weeks to give water depth of 480, 400 and 320 mm, respectively . The depth of water was 80 mm each irrigation. A factorial experiment with RCBD of 4 replicates was conducted in 2 consecutive seasons in 2010 – 2011 and 2011 – 2012. The cultivar Alguda gave highest grain yield (8.07 t/ ha) under 480 mm, and 7.02 t / ha average of 3 water depths. This cultivar was characterized by high growth rate (13.2 g/m2/ d) that
... Show More