The impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and specifically the virtual content delivery aspect of hybrid education. The outcomes of the end of semester evaluation will shape a better experience for upcoming years and guide distance education implantation in the program.
We will provide a new method in this study that integrates two types of applications, namely Graph Theory and Conjugate Young Diagram, the idea of combining the graph and the Young diagram is presented by Ali And Mahmood, which is primarily based on the idea of the e-abacus diagram, the new method is called GCYD, it directly applies to the English letter section, which will be a two-layer coding. It makes it difficult to detect the word or sentence.
In this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreSmishing is the delivery of phishing content to mobile users via a short message service (SMS). SMS allows cybercriminals to reach out to mobile end users in a new way, attempting to deliver phishing messages, mobile malware, and online scams that appear to be from a trusted brand. This paper proposes a new method for detecting smishing by combining two detection methods. The first method is uniform resource locators (URL) analysis, which employs a novel combination of the Google engine and VirusTotal. The second method involves examining SMS content to extract efficient features and classify messages as ham or smishing based on keywords contained within them using four well-known classifiers: support vector machine (SVM), random
... Show MoreIntelligent systems can be used to build systems that simulate human behavior. One such system is lip reading. Hence, lip reading is considered one of the hardest problems in image analysis, and thus machine learning is used to solve this problem, which achieves remarkable results, especially when using a deep neural network, in which it dives deeply into the texture of any input. Microlearning is the new trend in E-learning. It is based on small pieces of information to make the learning process easier and more productive. In this paper, a proposed system for multi-layer lip reading is presented. The proposed system is based on micro content (letters) to achieve the lip reading process using deep learning and auto-correction mo
... Show MoreFace detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThis study showed that the rock bed units of Fatha (M. Miocene) includes mold of fish fossils imprint on marly limestone; Injana (L. Miocene) includes large femur bone of Mastodont and large number of bone remains; and review study of Mukdadiya Formations (Pliocene) showed more than 21 mamalian species such as: Mastodont, Hipparion, Gazzella, Felidae, Bovidae, Antilopini, Caprinae, Crocodilia, and others. Those vertebrate fossils bones were deposited and preserved within rock bed units of fluvial and evaporite marine environments. Paleoenvironment of fluvial ecosystem made up of food chain, which were includes producer, herbivores as a primary consumer as Mastodon, Hipparion and Gazelle, carnivores as a secondary consumer as felidea and
... Show More