In recent decades, drug modification is no longer unusual in the pharmaceutical world as living things are evolving in response to environmental changes. A non-steroidal anti-inflammatory drug (NSAID) such as aspirin is a common over-the-counter drug that can be purchased without medical prescription. Aspirin can inhibit the synthesis of prostaglandin by blocking the cyclooxygenase (COX) which contributes to its properties such as anti-inflammatory, antipyretic, antiplatelet and etc. It is also being considered as a chemopreventive agent due to its antithrombotic actions through the COX’s inhibition. However, the prolonged use of aspirin can cause heartburn, ulceration, and gastro-toxicity in children and adults. This review article highlights the recent derivatives of aspirin, either to reduce the risk of side effects or to obtain better physicochemical properties. Aspirin derivatives can be synthesized in various pathways and have been reported to give better biological activities such as anticancer, anti-inflammatory, antibacterial, antioxidant, etc., compared to the parent drug. The presence of significant moieties such as nitric oxide (NO), NOSH, thiourea, azo, amide, and chalcone on the modified aspirin play important roles in achieving desired biological activities. The addition of the halogen in the modification has also become a preference among researchers as it also affects the actions due to its ability to hinder bacterial activity. This review is also sharing about the bulkiness effect of certain aspirin modifications that may cause steric hindrance of the compounds and influence their penetration into the enzyme’s active site. Overall, these aspirin modifications are safe to be considered as potential pharmaceutical agents.
There is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreIn this paper, we studied the spark corona discharge in tap and distillited waters. The results show the shape of cone that generated on the tip of capillary tube is different with conductivity of liquids. The blue glow appears at the end of capillary tube and the drop extends into a cone. In addition, the conducitivity is affected on the relationship between the appearance of the blue glow discharge with the applied voltage. The size of the cone decreases with an increase in applied voltage. The cone diameter at the base of capillary tube oscillates with period approximately 1 Sec. this oscillates in the cone diameters is due to the change distance between the liquid electrode and the surface of liquid. The intensity of spark corona dis
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show MoreThis study focuses on evaluating the suitability of three interpolation methods in terms of their accuracy at climate data for some provinces of south of Iraq. Two data sets of maximum and minimum temperature in February 2008 from nine meteorological stations located in the south of Iraq using three interpolation methods. ArcGIS is used to produce the spatially distributed temperature data by using IDW, ordinary kriging, and spline. Four statistical methods are applied to analyze the results obtained from three interpolation methods. These methods are RMSE, RMSE as a percentage of the mean, Model efficiency (E) and Bias, which showed that the ordinary krigingis the best for this data from other methods by the results that have b
... Show MoreAbstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
KE Sharquie, AA Noaimi, SJ Murtada…, Journal of Cosmetics, Dermatological Sciences and Applications, 2016 - Cited by 4