Breast cancer is the most common cancer among women over the world. To reducing reoccurrence and mortality rates, adjuvant hormonal therapy (AHT) is used for a long period. The major barrier to the effectiveness of the treatment is adherence. Adherence to medicines among patients is challenging. Patient beliefs in medications can be positively or negatively correlated to adherence. Objectives: To investigate the extent of adherence and factors affecting adherence, as well as to investigate the association between beliefs and adherence in women with breast cancer taking AHT. Method: A cross-sectional study included 124 Iraqi women with breast cancer recruited from Middle Euphrates Cancer Center. Morisky medication adherence scale (MMAS) and beliefs about medication questionnaires (BMQ) are used to assess adherence and beliefs respectively. Result: 25% of women were fully adherent (MMAS = 8). 83.06% of all women developed side effects from medications received. Side effects and unemployed women were significantly associated with non-adherence. Additionally, there is no significant association between beliefs in medications and adherence. conclusion The enormous percent of poor adherence caused by side effects suggests the need for interventions by educating patients about the importance of their treatment and how to overcome side effects.
This study identified the genus Coelastrella Chodat, 1922 which was isolated from a sediment sample taken from the Tigris river in Baghdad Governorate, Iraq. The alga was isolated and cultured in modified Chu 10 media and the morphological features of the isolated algae were observed in light microscopy (LM); it showed some characteristic features of this genus, such as its ellipsoidal or lemon- shaped cells, a visible pyrenoid and the chloroplast parietal. To ensure correct identification of the isolated alga, a molecular analysis using 18S rRNA gene and DNA sequencing revealed a match with C. terrestris (Reisigl) Hedewald & N. Hanagata 2002. This species is a new record in Iraq
... Show MoreThe paper presents research results of the vibration transmitted from the steering wheel of the
tractor with a 2-wheel drive to the driver’s hands. The vibration measurements were carried out on the
tractor randomly chosen from the collage of agriculture / university of Baghdad. Before testing the
tractor was examined and adjusted following the producer’s recommendations. The vibration levels
were measured during the operation tillage at idling and at full load .The field was 3١٫٧ m above level
sea. Soil was treated at soil constant moisture (1٧-20 %) with depth of plowing (١٧ cm). During
operation the weather temperature was measured (15 C) and humidity was ( 27 % ) The vibration level
on the steering whee
This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreBrain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show More