Nowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The present review discusses the phytochemical and bioactive compounds present in algae biomass and their potent biological activities. The review focuses on the use of alga in therapy and their pharmaceutical applications with special reference to the possible preventive and therapeutic role of algae against COVID-19.
Ciprofloxacin is widely used in treating adults infected with Gram-negative bacteria. It is contraindicated in children, growing adolescents and during pregnancy due to joint toxicity. Its toxicity concerning other organs needs to be clarified. Thus, this study was designed to study the possible cardiac damage induced by two selected doses of ciprofloxacin in juvenile rats.Eighteenth healthy juvenile rats (4 weeks old and their weight 30 ± 2 gm) were utilized in this study and divided into three groups. Group-I control; group II and group III, respectively injected IP with 25 mg/kg and 50 mg/kg ciprofloxacin every 12 hours for one week. Serum enzymes activities alanine aminotransferase (ALT), aspartate aminotransferase (AST), cr
... Show MoreIn this reserch Some new substituted and unsubstituted poly imides compounds. were synthesized by reaction of acrylol chloride with different amides (aliphatic and aromatic) in a suitable solvent in the presence amount triethyl amine (Et3N) with heating. The Structure confirmation of all polymers were confirmed using FT-IR,1H-NMR,13C-NMR and UV spectroscopy. Thermal analysis (TG) for some polymers showed their thermal stabilities. Other physical properties including softening points, melting point and solubility of the polymers were also measured
Asthma is a chronic respiratory disorder in which immunological and structural cells play a role. The limits of conventional medicines necessitate the development of innovative therapeutic techniques for asthma. In the present study, we investigated the possible protective effect of cinnamic acid (CA) on ovalbumin-induced asthma in a mouse model. Sixty albino male mice BALB/c type weighing (20-30) grams were chosen at random and divided into five groups each one contains 12 animal: Group I: PBS/liquid paraffin control. Group II: asthma model group. Group III: cinnamic acid control group; mice received cinnamic acid (50 mg/kg) in liquid paraffin orally by gavage. Group IV: asthma model / group of (25 mg / kg) cinnamic acid; mice received
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreAW Tarik, AW Ali T, A Salah, Journal of faculity of medicine Baghdad university, 2014 - Cited by 3
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O