Nowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The present review discusses the phytochemical and bioactive compounds present in algae biomass and their potent biological activities. The review focuses on the use of alga in therapy and their pharmaceutical applications with special reference to the possible preventive and therapeutic role of algae against COVID-19.
Significant risks to human health are posed by the 2019 coronavirus illness (COVID-19). SARS coronavirus type 2 receptor, also known as the major enzyme in the renin-angiotensin system (RAS), angiotensin-converting enzyme 2 (ACE-2), connects COVID-19 and RAS. This study was conducted with the intention of determining whether or not RAS gene polymorphisms and ACE-2 (G8790A) play a part in the process of predicting susceptibility to infection with COVID-19. In this study 127 participants, 67 of whom were deemed by a physician to be in a severe state of illness, and 60 of whom were categorized as "healthy controls" .The genetic study included an extraction of genomic DNA from blood samples of each covid 19 patients and healthy control
... Show MoreAdsorption studies were performed at different initial Tetracycline (TC) and Amoxicillin (AMO) concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. In the batch mode were investigated. The optimum pH of solutions is 6.5 for TC and 5 for AMO, agitation speed 200 rpm and concentration 50 ppm. The results in FTIR showed that there were -OH and amides (N-H) and other functional groups on the surface of Cladophora and Spirulina algae. The equilibrium isotherm data were modeled with Freundlich, Temkin, and Langmuir isotherm models. The data best fitted with the Langmuir model. The maximal adsorption capacity from the Langmuir model was (9.86, 20. 5 mg/g) for TC and (7.89, 17.4 mg/g) for AMO on
... Show MoreThis study was conducted to describe a protocol for the callus establishing culture of Lavandula angustifolia plant and estimating their content of volatile oil. The quantity of volatile oil callus tissues was compared with that of leaves production. Callus was induced from leaf explants on Murashige and Skoog medium (MS) supplemented with Naphthalene acetic acid (NAA) and Benzyl adenine (BA) in different concentrations. Maximum callus fresh weight was obtained in the combination of 10 mg/L BA and 3 mg/L NAA which reached 18 g after four weeks. The results of this work showed that the quantity of volatile oil from the highest fresh weight callus was 6 ml compared with quantity of 18g of leaves which gave 0.5 ml. Volatile o
... Show MoreBackground: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentineâ„¢) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10):
... Show MoreBackground: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentineâ„¢) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10):
... Show MoreA mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreAs possible mutual prodrug had been synthesized that contain metronidazole and dexamethazone conjugated through phosphodiester linkage. The rationale for this type of conjugate is to get a prodrug with possible site – specific delivery of its active constituents into the lower parts of the G.I.T.
This compound was synthesized by the reaction of dexamethzone – 21 – phosphate with metronidazole to form:(1 – (dexamethazone – 21 – phosphoryl) – metronidazole)
This conjugate was performed using dicyclohexylcarbodiimide (DCC) as a condensing agent. The identity of the prepared compound had been confirmed using T.L.C., U.V. spectroscopy, IR spectrosco
... Show More