Aceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizers alone and in combinations of two polymers (1:2 and 1:4 Drug: polymer ratio). Fifteen formulas of AC-NS.s were prepared and characterized for production yield, loading efficiency, particle size, polydispersity index and physical stability. The best formulas of NS were then lyophilized to be characterized by FTIR, DSC, P-XRD and SEM. After that, the best prepared formula of AC-NS regarding the involved characterization methods was incorporated in gel dosage forms using carbopol®940. From this study, we conclude that the dissolution rate and permeability of AC were improved when the particle size was reduced to Nano-scale as compared with pure drug.
It's challenging to help EFL students in Iraq learn and use synonyms. This study investigates the challenges faced by Iraqi English as a Foreign Language (EFL) students in understanding and employing synonyms. By employing Langacker's cognitive linguistic theory of domains, the research aims to enhance EFL Iraqi students' synonym knowledge and vocabulary acquisition. The study utilizes a descriptive analysis technique, with a pre-test and post-test design, involving fifty first-year students at the University of Baghdad's College of Languages, Department of English. The findings reveal that the domain theory significantly improved students' comprehension and application of English word semantics. Prior to the intervention, students
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreThe 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .
In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.
Note:- ns : small sample ; nm=median sample
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show More