Patch in transdermal drug delivery(TDDS) used to overcome the hypodermic drawback, but these patch also have absorption limitation for hydrophilic and macromolecule like peptide and DNA. So that micronized projection have the ability for skin penetration developed named as microneedle. Microneedle drug delivery system is a novel drug delivery to overcome the limitation of TDDS like skin barrier restriction for large molecule. Microneedle patch can penetrate through skin subcutaneous into epidermis, avoiding nerve fiber and blood vessel contact. There are many type of microneedle patch like solid, polymer, hallow, hydrogel forming microneedle and dissolving microneedle with different method of microfabrication
تقدم هذه الدراسة وصفا للطريقة المستخدمة في تحضير الكربون المنشط (AC)من بقايا الشاي. تم دراسة الخواص الفيزيائية والكيميائية وكفاءة الامتزاز للكربون المنشط المحضر. تم إنتاج الكربون المنشط (AC) على مرحلتين: الاولى التنشيط باستخدام حامض الفوسفوريك (H3PO4) والثانية الكربنة عند درجة حرارة 450 درجة مئوية. استخدم الكربون المنشط لغرض امتصاص العقار الدوائي السيبروفلوكساسين(CIP) . تمت دراسة عدة عوامل تشغيلية بدرجة حرار
... Show MoreNano crystalline copper sulphide (Cu2S) thin films pure and 3% Bi doped were deposited on glass substrate by thermal evaporation technique of thickness 400±20 nm under a vacuum of ~ 2 × 10− 5 mbar to study the influence of annealing temperatures ( as-deposited, and 573) K on structural, surface morphology and optical properties of (Cu2S and Cu2S:3%Bi). (XRD) X-ray diffraction analysis showed (Cu2S and Cu2S:3%Bi) films before and after annealing are polycrystalline and hexagonal structure. AFM measurement approves that (Cu2S and Cu2S:3%Bi) films were Nano crystalline with grain size of (105.05-158.12) nm. The optical properties exhibits good optical absorption for Cu2S:3%Bi films. Decreased of optical band gap from 2.25 to 2 eV after dop
... Show MoreThe green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.
The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.
Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have differ
... Show MoreEndoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.
In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show Moreby in situ polymerization of aniline monomer, conducting polyaniline (PANI) nanocomposites containing various concentrations of carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNT) were synthesized. The morphological and electrical properties of pure PANI and PANI /MWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) respectively. FTIR spectra shows that the carboxylic acid groups formed at the both ends of the sidewalls of the MWCNTs. The aniline monomers were polymerized on the surface of MWCNTs, depending on the -* electron interaction between aniline monomers and MWCNTs and hydrogen bonding into interaction between t
... Show MoreIn this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of Si
... Show MoreABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r
... Show More