Background: Cystinosis is a rare autosomal recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. It is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. Elevated white blood cell cystine content is the cornerstone of the diagnosis. Since chitotriosidase (CHIT1 or chitinase-1) is mainly produced by activated macrophages both in normal and inflammatory conditions which suggest that cystinosis should be included within the differential diagnosis of disorders associated with increased plasma chitotriosidase activity. This study is aimed to estimate serum chitotriosidase level, as a screening marker and therapeutic monitor for cystinosis disease in Iraqi children with cystinosis.
Subjects and Methods: The present study is a case-control study that included samples of 30 children with nephropathic cystinosis, compared to 25 healthy control children from those attending at The Genetic Rare Diseases Center / AL-Emamain AL-Kadhimain Teaching Hospital, Baghdad-Iraq.
Results: Our results reported that cystinotic children had a marked elevation of serum chitotriosidase activity, compared to age-matched healthy children, besides a significant associated with leukocyte-cystine content for cystinotic patients.
CHT1 as a Novel Biomarker
Conclusion: Estimation of serum chitotriosidase activity might aid in monitoring the therapeutic benefits of cysteamine therapy, as well as the prognosis of the disease when WBC cystine assessment is not available.
Key Words: Cystinosis, Cysteamine, Chitotriosidase.
In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. A minimization to a
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show MoreSpatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreVisual analytics becomes an important approach for discovering patterns in big data. As visualization struggles from high dimensionality of data, issues like concept hierarchy on each dimension add more difficulty and make visualization a prohibitive task. Data cube offers multi-perspective aggregated views of large data sets and has important applications in business and many other areas. It has high dimensionality, concept hierarchy, vast number of cells, and comes with special exploration operations such as roll-up, drill-down, slicing and dicing. All these issues make data cubes very difficult to visually explore. Most existing approaches visualize a data cube in 2D space and require preprocessing steps. In this paper, we propose a visu
... Show MoreMulti-walled carbon nanotubes from cheap tubs company MWCNT-CP were purified by alcohol \ H2O2 \ separation funnel which is simple, easy and scalable techniques. The steps of purification were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy SEM with energy dispersive of X-ray spectroscopy EDX and surface area measurements. The technique was succeeded to remove most the trace element from MWCNT-CP which causing increase the surface area. The ratios of impurities were reduced to less 0.6% after treatment by three steps with losing less than 5% from MWCNT-CP.