Secnidazole was linked with ciprofloxacin as mutual prodrugs to get antibiotics with broader spectrum of activity, improved physicochemical properties and given by single dose to improve patient’s compliance. Furthermore, they provide structural modifications to overcome bacterial adaptation. The structures of the synthesized compounds were confirmed using FT-IR, mass spectrometry, elemental microanalysis (CHNO) and some physiochemical properties. This modification was led to an increase in Log P values for Mutual I (Log P 1.114) and Mutual II (Log P 1.97) compared with its values for Secnidazole (Log P -0.373) and ciprofloxacin (Log P -0.832). The solubility of prodrugs had been determined in different media, Mutual II showed 144-fold increase in aqueous solubility compared to ciprofloxacin. Taste evaluation by panel method showed palatable taste in prodrugs compared to the parent drugs. The synthesized compounds were screened for their antimicrobial activity against different bacterial strains which are, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli and Klebsiella pneumonia. The prodrugs have revealed excellent antibacterial activities compared with the parent compounds. Chemical hydrolysis study at pH (1.2 and 7.4) has indicated that these compounds may pass unhydrolyzed through the stomach and produce enough stability to be absorbed from the intestine as indicated by t1/2 values.
In this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.
Several new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreAbstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
Phthalimide formation of Phthalic anhydride with various amines using microwave or without a method with the difference of the catalyst used in a prepared Phthalimide, either structure general are C6H4CONRCO and used as starting materials in synthesis several compounds derivative phthalimides are an important compounds because spectrum wide biological activities including Antimicrobial activity, anticonvulsant activity, Anti-inflammatory activity,Analgesic activity, Anti- influenza activity and Thromboxane inhibitory activity
2(2-Tetrahydropyranylthio) methyl cyclopropyl amines were synthesized from allylmercaptan through several steps. The structures of the intermediates and the final products where confirmed through IR, NMR and elemental analysis, these compounds may be of value in the treatment of diseases where free radicals are implicated in their pathogensis, since the thio and the amino groups of the synthesized compounds may act as free radical scavengers.
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Gold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show MoreNew compounds containing heterocyclic units have been synthesized. These compounds include 2-amino 5- phenyl-1,3,4-thiadiazole (1) as starting material to prepare the Schiff bases 2N[3-nitrobenzylidene -2 hydroxy benzylidene and 4-N,N-dimethyl aminobenzylidene] -5-phenyl-1,3,4-thiadiazole (2abc) , 2N[3-nitrophenyl, 2-hydroxyphenyl or 4-N,N-dimethylaminophenyl] 3-]2-amino-5-phenyl-1,3,4-thiadiazole]-2,3-dihydro-[1,3]oxazepine-benzo-4,7-dione] (3abc), 2N[3-nitrophenyl,2-hydroxyphenyl,4-N,N-dimethylaminophenyl]-3-[2-amino-5-phenyl-1,3,4-thiadiazole-2-yl]-2,3-dihydro-[1,3]oxazepine-4,7-dione[(4abc), 2-N-[3-nitrophenyl, 2-hydroxyphenyl or 4-N,N-dimethylaminophenyl]-3-[2-amino-5-phenyl-1,3,4-thiadiazole-2yl]-1,2,3-trihydro-benzo-[1,2-e][1,3] diaz
... Show MoreA process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nano