In recent decades, global obesity has increased significantly, causing a major health problem with associated complications and major socioeconomic issues. The central nervous system (CNS), particularly the hypothalamus, regulates food intake through sensing the metabolic signals of peripheral organs and modulating feeding behaviors. The hypothalamus interacts with other brain regions such as the brain stem to perform these vital functions. The gut plays a crucial role in controlling food consumption and energy homeostasis. The gut releases orexigenic and anorexigenic hormones that interact directly with the CNS or indirectly through vagal afferent neurons. Gastrointestinal peptides (GIP) including cholecystokinin, peptide YY, Nesfatin-1, glucagon-like peptide 1, and oxyntomodulin send satiety signals to the brain and ghrelin transmit hunger signals to the brain. The GIP is essential for the control of food consumption; thus, explain the link between the gastrointestinal tract (GIT) and the brain is important for managing obesity and its associated diseases. This review aimed to explain the role of gut peptides in satiety and hunger control.
The haplotype association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease.Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls.It starts with inferring haplotypes from genotypes followed by a haplotype co-classification and marginal screening for disease-associated haplotypes.Unfortunately,phasing uncertainty may have a strong effects on the haplotype co-classification and therefore on the accuracy of predicting risk haplotypes.Here,to address the issue,we propose an alternative approach:In Stage 1,we select potential risk genotypes inste
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show MoreThe permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be
Computer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
The effect of α-particle irradiation on the optical absorption in nuclear track detectors (LR115) has been studied. These detectors have been irradiated with different doses. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy, that irradiation results in shifting the peaks of the optical absorption. The values of Urbach energy have been calculated from the position of steady-state optical band gap energy, for a standard sample which was unirradiated with indirect influence, has been found 1.9 eV whereas its value after irradiation 1.98 eV. In case of the direct influence, it is found to be, respectively, before irradiation 1.98 eV and after irradiation 2.05 eV. From these results, we can
... Show MoreThis study has applied the theoretical framework of conceptual metaphor theory to the analysis of the source and target domains of metaphors that are used in two English nineteenth century sonnets, both written by contemporaneous female poets. The quantitative and qualitative results of the textual analysis have clearly revealed that Elizabeth Barrett Browning’s sonnet 23 centres around the conceptual mapping of the journey of love and life with that of possession. In contrast, Christina Rossetti’s sonnet Remember tackles the central conceptual mapping of death as a journey in relation to its further experiential connections. In addition, the application of conceptual metaphor theory in identifying the frequencies and densities of metap
... Show MoreTwo EM techniques, terrain conductivity and VLF-Radiohm resistivity (using two
different instruments of Geonics EM 34-3 and EMI6R respectively) have been applied to
evaluate their ability in delineation and measuring the depth of shallow subsurface cavities
near Haditha city.
Thirty one survey traverses were achieved to distinguish the subsurface cavities in the
investigated area. Both EM techniques are found to be successfiul tools in study area.
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show More