In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that prepared from the best tested condition was further optimized by preparing it using inverse method via the addition of gold salt to the reducing agent in opposite to the previous traditional method (G21). The optimized gold nanoparticles were characterized by SEM, EDX, TEM and zeta potential. The obtained results indicated that (G21) with reactants concentrations of 0.5mM and 10mM for HAuCl4.3H2O and trisodium citrate dihydrate respectively, 65°C of preparation temperature and 1500rpm of stirring rate was chosen as an optimized formula according to AFM provided gold nanoparticles with smoother surface, smaller size (average 8.75nm) with more uniform size distribution (7.32%) as well as short over all preparation time (27minutes). In addition to that all results of SEM, EDX and TEM indicated uniform spherical shape with zeta potential of -47.87. In conclusion, inversed method is promising for the preparation of gold nanoparticles with high monodispersity.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MorePolyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range
... Show MoreAbstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreThe present work is concerned with the finding of the optimum conditions for biochemical wastewater treatment for a local tannery. The water samples were taken from outline areas (the wastewater of the chrome and vegetable tannery) in equal volumes and subjected to sedimentation, biological treatment, and chemical and natural sedimentation treatment.
The Box-Wilson method of experimental design was adopted to find useful relationships between three operating variables that affect the treatment processes (temperature, aeration period and phosphate concentration) on the Biochemical Oxygen Demand (BOD5).
The experimental data collected by this method were successfully fitted to a second order polynomial mathematical model. The most fa
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreThis study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreSteps were taken to obtain the Kojic acid crystals from local fungal isolation A. flavus WJF81 by separating the fermentation products from the fungus mycelium from the production plant at the centrifuge at a speed of 5000 cycles for 10 minutes. The extraction was followed by ethyl acetate then supernatant concentrate by using rotary evaporator, and dried with heat oven 37ºC. Long, yellowish, pristine acid crystals were obtained that examined the optical microscope with a magnification force of 10x and 40x. The melting point of kojic acid was determined between 152.9-153.5 °C Results of the diagnosis of Kojic acid by applying High pressure liquid chromatography HPLC technique showed that the acid was at one peak, which was close to the
... Show More