Markov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problems (IVPs) compared to other approaches found in the literature, which is verified by the obtained solutions. The determination of the transient solutions for Markov chains is presented using the proposed method. The results show better accuracy in solving the transient distribution in Markov chains, which implies that there is an improved assurance in adopting this approach in future studies of the Markov chain modeling process for predicting future events based on the current state of a process. Future studies on Markov chain modeling could adopt the introduced method to predict future events based on the current state of a process.
The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
This study included the extraction properties of spatial and morphological basins studied using the Soil and Water Assessment Tool (SWAT) model linked to (GIS) to find the amount of sediment and rates of flow that flows into the Haditha reservoir . The aim of this study is determine the amount of sediment coming from the valleys and flowing into the Haditha Dam reservoir for 25 years ago for the period (1985-2010) and its impact on design lifetime of the Haditha Dam reservoir and to determine the best ways to reduce the sediment transport. The result indicated that total amount of sediment coming from all valleys about (2.56 * 106 ton). The maximum annual total sediment load was about (488.22 * 103 ton) in year 1988
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
74 fanners were randomily selected from the Lc:ital. of 406 fanners using the Modern Irrigation System up to November , 2000 , for the purpose of wide adoptation of such system. Rcsults indicated according to the data which has been obtained and statistically analysed by the statistical package for the Social Sciences (SPSS) program showed that the majority of the farmers adopted this new system of irrigation due to the increase in the yield up to 5" .
This paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show MoreTemperature inside the vehicle cabin is very important to provide comfortable conditions to the car passengers. Temperature inside the cabin will be increased, when the car is left or parked directly under the sunlight. Experimental studies were performed in Baghdad, Iraq (33.3 oN, 44.4 oE) to investigate the effects of solar radiation on car cabin components (dashboard, steering wheel, seat, and inside air). The test vehicle was oriented to face south to ensure maximum (thermal) sun load on the front windscreen. Six different parking conditions were investigated. A suggested car cover was examined experimentally. The measurements were recorded for clear sky summer days started at 8 A.M. till 5 P.M.
... Show More